6.841/18.405J: Advanced Complexity Theory April 29, 2002

Lecture 19
Lecturer: Madhu Sudan Scribe: Christos Kapoutsis

1 Introduction

In the complexity-theoretic terms we have seen so far, the formal way to express the intuitive fact that “a
problem is very difficult to practically solve by a computer” is to say that “the problem is NP-hard” or, if we
restrict our attention to just problems in NP, to say that “the problem is NP-complete”. If we indeed accept
that this matching between intuition and formalism is a correct one and we further assume that PZNP, then
it seems like we should also accept the following two conclusions:

e If a formal problem correctly describes a practical one and also proves to be NP-complete, then we
should stop looking for efficient solutions to the practical problem.

e Cryptography is feasible.

The truth is that neither conclusion can be derived without additional assumptions. Today we discuss why
this is so for the first of them.

The motivation comes from real-world examples of algorithms that solve NP-complete problems in a
“satisfactory” way, in all practical respects. By studying what “satisfactory” means in those cases, we see
that two important choices that we made when we defined what it means for an algorithm to solve a problem
are actually not necessary, as far as practical solvability is concerned:

e Exact solution: We required that for every instance of the problem the algorithm should return the
eract answer. In certain practical cases, we are just as happy even with some approzimation of this
exact answer.

e Worst case instances: We required that the algorithm should return the exact answer for every
instance of the problem. In certain practical cases, hard instances (i.e., the instances responsible for
the problem being NP-complete) rarely happen, and we are just as happy even with an exact answer
most of the times.

In the next two sections we see what modifications in our theory so far are appropriate for the study of the
above cases.

2 Approximation algorithms

Formally, a combinatorial optimization problem is any polynomial-time computable function f : {0,1}* x
{0,1}* — Z™* mapping every instance x € {0,1}* of the problem and every possible answer y € {0,1}* to it
to some value f(zr,y) € Z7 indicating how “good” y is as a solution to z. An algorithm A solves f if, for
every z, A(z) is f(z,y) for the best solution y to x,

A(a) = max{f(z,1)}.

Sometimes f(z,y) indicates how “bad” y is as a solution to z, in which case it is the minimun we are after,
instead of the maximum.

For example, the problem of finding the size of the maximum clique in a graph is defined by the function
MAXCLIQUE mapping every graph G = (V, E) and every ¢ C V to the value

MAXCLIQUE(G, ¢) 0 if ¢ is not a clique in G,
c) =
’ the size of ¢ otherwise,

19-1

and we want to maximize MAXCLIQUE(G,). Similarly, the optimization problem of finding the chromatic
number of a graph is defined by the function CHROMATIC mapping every graph G = (V, E) and every coloring
c¢:V — N of its vertices to the value

00 if ¢ is an illegal coloring,
CHROMATIC(G, ¢) =)
the number of colors used by ¢ otherwise,

and we want to minimize CHROMATIC(G,). The problems MAXSAT and MAX3SAT are also defined in a similar
manner.

Relaxing the requirement that the exact optimum is returned, we get the notion of an a-approzimating
algorithm for a problem f, where a describes the proximity to the exact optimum that we want to achieve
as a function from input sizes to reals not less than 1. We say A is such an algorithm if, for every instance

z of the problem,

a(|z])
In general, we say that any pair (f,«) defines an approzimability problem and that A solves (f,a) if A
a-approximates f.

Clearly, the step from optimization problems to approximability problems can be seen as the step from
considering only the fixed approximation ratio a(n) = 1 to allowing other approximation ratios as well.
Work by Johnson in the late 70’s showed that this view offers little help: Problems that behave similarly
for a(n) = 1 may exhibit radically different behaviour for other approximation ratios. For example, for f
any of the problems MAXSAT, MAXCLIQUE, CHROMATIC, we know that the approximability problem (f,1) is
NP-complete. However:

< Afz) < m;tX{f(w,y)}-

e (MAXSAT,2) is in P.

e For all € > 0 and ¢ > 1, (MAXCLIQUE,1 + €) is as hard as (MAXCLIQUE,c). That is, if one can
approximate the maximum clique size of a graph within a constant factor, one can also approximate
it with a ratio as close to 1 as desired.

o (CHROMATIC, &) is NP-complete.

This clearly shows that reasoning like (f,a) = (9,a) = (f,a') = (g,¢') is wrong.
The PCP methodology has provided techniques for studying approximation problems, and some of the

results known today are:
e (MAXSAT, §) is NP-complete.
o (MAX3SAT, £ — €) is NP-complete, for all € > 0.
o (MAX3SAT, 2 +¢) is in P, for all € > 0.
o (MAXCLIQUE,n'~¢) is NP-complete, for all € > 0.
*

CHROMATIC, n'~¢) is NP-complete, for all € > 0.

3 Average case complexity

Formally, a distributional decision problem is a pair (L, D), where L C {0,1}* is a language and D is a
distribution over {0,1}". (That is, D is a function D : {0,1}* — [0, 1] such that 3_ ¢ 3. D(z) =1.)

To solve the problem, an algorithm has to correctly determine membership in L wﬁlen the inputs are
drawn according to D. The algorithm is considered efficient if it “runs in expected polynomial time”. The
quotes indicate that the notion of efficiency is tricky to formalize, especially when one considers problems in
NP. Work on how to do this correctly was done by Levin (1984).

19-2

3.1 Random self-reducibility of the permanent

For problems of high complexity (PSPACE, #P), the notions seem to be clearer. We begin the study of
average case complexity with a theorem that computing the permanent is as hard on average as in worst
case. Recall that a permanent of a matrix M = [m; ;] is given by

n
perm(M) = Z Hmz’,ﬂ'(i)a

TESn i=1

where S, is the set of all permutations on [n] = {0,1,...,n —1}.
We start with the definition of a distribution D over matrices. For every n € Z™*, consider the following
random experiment:

1. randomly select a prime p of size! ©(n'?), then

2. randomly select a matrix from Z7*™ (i.e., construct an n x n matrix by randomly selecting each one
of its elements from Z,).

Let D,, be the distribution over matrices defined by this experiment; then let D = (Dy,)n>1. [Note that this
doesn’t exactly match the definition of a distribution over {0,1}* given above. This is ok, as it won’t harm
the correctness of the theorem. Alternatively, instead of one separate experiment for every n € ZT, we could
have only one experiment:

0'. randomly select n from Z* with probability then

1
n(n+1)?
1. do Step 1 from above for the selected n, then

2'. do Step 2 from above for the selected n,

and have D be the distribution over matrices defined by this experiment (this is the correct definition
according to Levin).]
The theorem we are going to prove is the following:

Theorem 1 If there exists a polynomial-time algorithm A such that, for all sufficiently large n and for
matrices drawn from D,,, A computes the permanent correctly with probability 1 — m, then there is also
a randomized, polynomial-time algorithm B that, for all sufficiently large n and for every matrix M in D,,,

B computes the permanent of M correctly with high probability.

Proof We don’t get into the issues concerning the random selection of the prime number p. We consider a
fixed p of size ©(n'?) and assume that a polynomial-time algorithm A(-, p) computes the permanent correctly
with probability 1 — m for matrices randomly selected from Z;*™. Consider the algorithm B(:,p) that
on input M € Z3*™ computes as follows:

1. picks a random matrix R from Z;*",

2. for each 1 = 1,2,...,n + 1, computes y; + A(M +i- R,p) (where i - R stands for multiplying every
entry of R by 1),

3. interpolates and finds a polynomial ¢(x) of degree n such that ¢(i) = y;, for all i =1,2,...,n+ 1.
4. outputs ¢(0).

It can be shown that with high probability over its internal coin tosses, B(:,p) correctly computes the
permanent of its input. B

Note that the proof uses the idea of “self-correction” that we have seen in previous lectures: symbolically,
perm(M) is a degree n polynomial in the n? variables mMi,1,M1,2,--.,Mp,n; and A is an oracle that computes
this polynomial correctly quite often; so, B is what we get by applying self-correction to A.

L«Size” here is the actual size of the number; not its length in bits.

19-3

3.2 The class DNP

In this section we give the definition of the class DNP (Distributional NP). In the next lectures we will give
theorems about it. B
First, we need to associate with every distribution D the function D : {0,1}* — [0, 1], defined by

D) = ¥ D),

y<z

so that D(a:) is the probability that a string selected according to D “comes before” z. Here, a fixed,
reasonable liner ordering of {0, 1}* is assumed; e.g., the usual ordering 0,1,00,01,10,11,....
Now, we are interested in two special kinds of distributions over {0,1}*.

Definition 2 A distribution D over {0,1}* is P-computable if D is polynomial-time computable (i.e., there
exists a polynomial-time algorithm that on input x outputs D(x)).

An example of such a distribution is the uniform distribution, defined by D(z) = m2"m‘.

Definition 3 A distribution D over {0,1}* is P-samplable if there exists a probabilistic algorithm A and a
polynomial p such that A outputs x with probability D(z) and after p(|z|) steps.

A P-computable distribution is P-samplable, as well. But the converse is probably false.

Definition 4 The class DNP contains exactly the distributional decision problems (L, D) for which the
language L is in NP and the distribution D is P-computable.

Note that considering NP languages with P-samplable distributions results in a class larger than DNP.

19-4

