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Lecture 22
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In this lecture we will cover Quantum Information, Manipulation, Circuits, and Computers. First we will
close the topic of Average-case Complexity with some words about unanswered questions in the field.

1 Average-Case Complexity

Average-case Complexity is for the most part still not understood. Even the following simple problem, which
is fundamental to the study of average-case complexity, is still unanswered.

Given a random SAT formula ¢ in n variables, with a number of 3-CNF clauses equal to An for some
predetermined constant A, where the clauses are picked independantly randomly from a uniform distribution,
is the formula satisfiable or not?

From experimental evidence, it’s been determined that:

- if A > 6, the probability that ¢ € SAT approaches 0.
- if A < 3, the probability that ¢ € SAT approaches 1.

Between these two constants, it’s harder to tell whether a given formula is satisfiable, and the threshold
is around A = 4.2. At this threshold, one would imagine that the problem is hard on average, but we have
no formal way of showing this.

In practice, there are good heuristics for SAT, but no proofs - if a heuristic algorithm fails, we don’t know
if it’s because there’s no satisfying assignment, or if the heuristic simply can’t cope with that particular
formula. Also, for formulae that take a long time, there isn’t a way of knowing if they’re taking polynomial
or exponential time. There’s a lot of work that needs to be done to link theory and practice.

Ideally, we would want some way of relating DNP-completeness and NP-completeness. Feigenbaum and
Fortnow have pointed out that one of the more obvious ways of doing this isn’t going to work.

Let’s assume, as we might like to, that a reduction exists from an NP-hard problem R’ to a DNP problem
(R, D), where D is a polynomial-time sampleable distribution, such that the randomized reduction of an
instance z of R' produces (for example) four random instances x1,xs,x3, x4 of (R, D) such that all z; are
solvable. Each z; is distributed according to D, but they don’t need to be necessarily independant of each
other. If this is possible, then the polynomial hierarchy collapses.

(Is it necessary that this distribution even exists, though? This is a tricky question - it does exist, but
it’s possible that it might not be sampleable.)

There are two ways out of this situation: We can follow a generic Turing reduction instead, or we could try
using a problem that’s complete for a class between P and NP (possibly BPP or ’statistical zero knowledge’),
which could still give us an interesting result.

2 Physics vs. Computation

To the view of the physicist, physics is the goal, and computation is a tool that he can use to use to
analyze physics and extract relationships. To the computer scientist, computers are the goal, and physics
is a tool she can use to build machines that perform computation. (A fanciful example is using bent wire
and a soap solution to form a surface - this solves an extremely complicated differential equation naturally.)
The computer scientist comes up with a mathematical model, and tries to prove that it is both physically
realizable, and that it’s the strongest possible - that it can model all physical processes.

The Turing-Church hypothesis states that every physically realizable computing device can be simulated
by a TM. The stronger version of this hypothesis also claims that a TM can do this with only polynomial
slowdown. The hypothesis has ben challenged in the past by the introduction of randomness (which Turing
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machines can’t predict). Randomness is a resource that can speed up a process, and challenge the strong
hypothesis (i.e. 3L € BPP that we only know of an exponential-time deterministic algorithm for). And you
can buy computer chips that will use physical processes to give you random numbers, so this could be an
effictive challenge to the strong version of the hypothesis.

However, the more recent challenge to the strong Turing-Church hypothesis has come with the introduc-
tion of quantum computation.

2.1 The two-slit experiment

We have a wall that can measure the intensity of light hitting it. In front of this wall we place a screen with
two slits, and in front of that, a light source. When either of the slits is covered, the wall is illuminated
with a fairly predictable Gaussian-like intensity behind the open slit. However, if we uncover both slits,
the intensity of the light is banded because of interference, with a node of no light at all between the two
slits, instead of the straightforward superposition we would expect. We can describe the 1-screen case with
differential equations, but Feynman posed the problem of n screens with n holes in series. Calculating the
amount of light that hits that hits the wall at any point is in EXP. This is a case of TMs failing to simulate
physical processes with polynomial slowdown, so computer scientists create a new model of computation,
with Quantum Turing Machines.

2.2 Quantum information

A Quantum bit (qubit) can be described by a vector in C? of unit length. This differs from a probabilistic
bit (which is a real number p € [0,1]). The two components of this state represent the probabilities of the
two possible outcomes - a qubit can, when observed, resolve to either a 0 or a 1.

The state of an n-qubit system can be represented by a vector in C2". The reason why it can’t be
represented as a C?" vector is because of quantum entanglement. Each of the 2" components represent the
probabilities that the system will resolve to each of the 2™ different possible outcomes.

2.3 Quantum operations

There are two main operations we can perform on a quantum system. We can manipulate it (which is
referred to as Quantum Evolution) or we can observe part of, or all of the system (which is referred to as
Quantum Measurement).

Consider a 2-qubit system with state (Js, 3, 3,0). This state is described in standard notation as

75100 > +3/01 > +5[10 > +011 >

The coefficients to the left of the states are known as the amplitudes.

Using quantum measurement, we can look at part of the system. For example, we can look at the first
bit and see how it comes out. The probability we’ll get a 1 is %, and the probability we’ll get a 0 is i. If we
get a 0, that leaves the system in the state

VA 5100 > + /% Lot >
If we observe a 1, that collapses the system to the state

1]10 >
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2.4 Quantum evolution

Consider another n-qubit quantum system with state described by v € C?", and a 2" x 2" matrix U over C
such that U is unitary (i.e. U-UH = In. UH is the Hermetian transpose of U, which involves transposing
the matrix and taking the complex conjugate of all cells.) Quantum evolution can be modelled by taking
the state v and calculating U - v for the new state. A helpful unitary matrix for a single qubit is one of the
form

cosf sin@
—sinf cosé

, which rotates a qubit according to 6. This can be used to negate or flip a single qubit at a time.

2.5 Quantum circuits

A quantum circuit consists of a n-input, m-output circuit that has has these unitary matrices as gates. These
gates can take any number of qubits as inputs and output the same amount of qubits. The full generalization
of quantum circuits allows measurement to take place at any point in the system, but it can be shown that
for any circuit there is an equivalent one that postpones measurement until the end with a small overhead.

Quantum circuits do not compute functions per se, but essentially sample from a distribution D :
{0,1}™ — {0,1}™. These distributions are not necessarily polynomial-time sampleable - there are D that
are not poly-size circuits, but are poly-size Q-circuits.

2.6 QTMs

Does there exist a generalized machine that can simulate any gate arrangement? A QTM is roughly analogous
to a deterministic Turing machine. Recall the formal definition of a Turing machine as the tuple

(Q,E,F,é,qo,F)
0:QxT' = QxT x{L,R,stay}
qo GQ,FQQ

A QTM has a very similar definition, except that ¥ and I' are qubits, and § is a unitary matrix. For
every quantum circuit C' that samples from a distribution D, there is a QTM M that simulates it to within
any arbitrary €. The reason we can only attain e closeness is because there can be irrational constants like
v/3 that appear in the gates of C, but don’t show up in the QTM. We can approximate these constants,
though. [Bernstein & Vazirani]

22-3



