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In this lecture we will talk about Quantum Complexity. However, let’s first say some last things about
Average Case Complexity.

1 Average Case Complexity

Average Case Complexity is vastly non understood. One of the main open problems is understanding the
average complexity of 3 — SAT. For every n consider the following distribution on instances of 3 — SAT:
pick a random formula on n variables with An clauses, where by a random formula we mean that every
clause is chosen uniformly and independently at random among all possible clauses. It can be proven that:

e If A > 6 then, with probability going exponentially (in n) to 1, the formula is not satisfiable.

e If A < 3 then, with probability going exponentially (in n) to 1, the formula is satisfiable.

The threshold seems to be 4.2. In other words, 3— S AT with respect to the above distribution for A = 4.2
seems to be a good candidate for a problem hard on average.

In practice, there are many heuristics that people use to find satisfying assignments that work well. The
drawback is that when the heuristic algorithm fails, we do not know if it failed because there is no satisfying
assignment or because it needs more time. Our hope would be an algorithm that provides us with a proof
that the given formula is unsatisfiable, if that is the case. But do such proofs exist? This question is one of
the main questions of Proof Complezity, and, modulo distribution on the instances, is the co — NP vs NP
question.

Our hope is relating N P-completeness and DN P-completeness. Some possibility of doing this have
already been ruled out. In particular, consider a reduction from some N P-hard problem R' to a problem
(R, D) (where D is a polynomial time samplable distribution) of the following kind: on input z we reduce
the problem of deciding whether x € R’ to the problem of solving (R, D) on, say, four instances x1,z2, T3, T4,
where Vi z; is distributed according to D, but they are not necessarily independent. [Feigenbaum & Fortnow]
show that the existence of such a reduction implies that the PH collapses.

There are at least two ways out of this:
e Consider a ‘classical’ Turing reduction.

e Try a reduction from some other complexity class, such as Statistical Zero Knowlegde.

2 Quantum Complexity

For a physicist, physics is the goal, while computers are the tool. For a computer scientist is true the
opposite: computers are the goal, physics is the tool. In particular, a computer scientist tries to come up
with an abstract model of computation, and then show (1) it is physically realizable and (2) it is the strongest
possible.

Very influencing has been the

e Turing-Church Thesis: every physically realizable computing device can be simulated by a Turing
machine.

What is really relevant to Complexity Theory, however, is the
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o Strong Turing-Church Thesis: every physically realizable efficient computing device can be simulated
by a Turing machine with a polynomial time slow-down.

There have been two main challenges to the Strong Turing-Church Thesis.

The first one comes from Randomness: some problems are efficiently solvable (with high probability)
using randomness, but are not known to be solvable in deterministic polynomial time. This is the BPP vs
P (open) question.

The more recent challenge comes from Quantum Physics. We start with an experiment: Consider a wall
with two small holes A and B. In front of the wall, at equal distance from A and B, we put a source of light,
and behind the wall we put a screen where we can measure the intensity of the received light.

If we close one hole A or B, and let the light go through the other, we measure the same intensity on
the screen. However, when opening both holes, the measured intensity is not the sum of the intensities
previously measured. In particular, at the point on the screen at equal distance from A and B we observe
no light, while there was some when opening just one hole.

This experiment can be turned in a computational problem as follows: given n walls each with n holes
which can be open or closed, a source of light in front of all the walls and a point P on a screen behind all
of them: do we measure light in P? This problem was considered by Feynman in the 80’s.

2.1 Quantum bits

We define the state of a system consisting of one Quantum Bit (qubit) as a vector € C? of unit length (for
this lecture, you can think of it as being a vector with real components). We can think of a qubit as of a
coin which has been tossed but has not landed yet. The components of the state represent the probability
that this coin will land on head or tails.

Similarly, the state of a system consisting of n qubits is a vector € C?" of unit length. Again, we can think
of each component of this vector as expressing the probability that the n coins will land in some particular
configuration.

What can we see of the qubits, and how can we manipulate them? These two aspects are referred to as
Quantum Measurement and Quantum Evolution, respectively.

2.2 Quantum Measurement

1 1
V272
often sparse, i.e. most of their coordinates are 0):

Consider two qubits in the state ( —3,0). We use the following notation (useful because states are

1 1 1
— 00> +=[01> — =[10> +0-[11>.
2 2 2

%

2
This means that if we measure the state then with probability (\%) we will see 00, with probability

(%)2 we will see 01 and so on.
We can also measure one qubit at a time. In this case we follow the rule of conditional probability. For
example, if we observe the first (leftmost) qubit in the above example, then with probability 1/2 + 1/4 we

see a 0, and then we are in the state
4 1 4 1
- - —=00 —-=|01
\/g \/§| ” +\/; 2| >

while if we see a 1 then we are in the state
1]10 > .
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2.3 Quantum Evolution

Consider some state on n qubits v € C*". For every 2" x 2" matrix U over C which is unitary (i.e.

U-UH = I3n, where U is the transposed conjugate of U) the tranformation v — Uwv is physically realizable.

1 1

-1 1

the bit is preserved in the sign, so that we can unflip it), and the general form of these 1-qubit operations is
cosf sinf

[— sinf  cos 0] ’

For example, the matrix [(1) (1]] negates a single qubit, the matrix % [ flips one (the value of

A quantum circuit is a circuit where we have such matrices as gates. It can be proven that we can postpone
every measurement at the end paying only a little overhead. Rather than computing some function, quantum
circuits sample from some distribution, and in particular they can sample from some distributions which are
not known to be polynomial time samplable.

A guantum Turing machine is similar to a classical Turing machine, but the transition function is given
by a unitary matrix, representing the quantum evolution of the state. [Bernstein & Vazirani] show that
a quantum Turing machine can be initialized in such a way that it can simulate every given circuit. In
particular, we can get € close to the distribution sampled by the circuit with only polynomial time slow-
down. Note we cannot ask for the quantum Turing machine to sample ezactly the same distribution sampled
by the circuit, because the circuit may have gates with values (e.g. v/3) not included in the definition of the
quantum Turing machine.
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