6.841/18.405J: Advanced Complexity Theory May 13, 2002 Lecture 23 Lecturer: Madhu Sudan Scribe: Alice Chan

1 Today

Recap of quantum computing model, Simon's algorithm, Shor's algorithm for factoring.

Quantum circuits 1.1

These are circuits with n different wires combined using quantum gates. A quantum gate is a map from $2^k \to 2^k$. The Hadamard transform, "negation" and "and" form a sufficient collection of gates.

The Hadamard transform, H_2 : $\begin{vmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{vmatrix}$,

The transition function for a quantum TM is a transition matrix and the tape consists of q-bits.

"Quantum polynomial-time"

BQP is, in some sense, an extension of BPP and EQP an extension of ZPP. BQP is the class of languages that can be solved with a polynomial number of steps on a quantum TM, with completeness and soundness as defined before. An equivalent definition is that BQP is the class of languages that can be solved by a polynomial-sized quantum circuit which is constructible in classical polynomial-time.

Simon's algorithm 1.2

This algorithm is for a promise problem where we are trying to decide whether a function f is 1-1.

The oracle is the function $f: \{0,1\}^n \to \{0,1\}^n$.

A YES instance is the case when f is not 1-1, ie. $\exists s \in \{0,1\}^n - \{0\}^n$ s.t. $\forall x f(x+s) = f(x \oplus s) = f(x)$. If such an s exists, f is at approximately 2-1.

A NO instance is the case that f is 1-1.

Suppose $x = |010111\rangle$ and apply H_2 to each of the bits. The outcome is $\frac{1}{2^{\frac{n}{2}}}\sum_{y\in\{0,1\}^n}(-1)^{\langle x,y\rangle}|y\rangle$. Each of the 2^6 possible outcomes has equal probability of occuring.

Simon's algorithm:

Initialize the quantum circuit to $|0^n, 0^n>$.

Apply H_2 to the first n bits and get $\frac{1}{2^{\frac{n}{2}}} \sum_{x \in \{0,1\}^n} |x,0^n>$. Set the machine to $\frac{1}{2^{\frac{n}{2}}} \sum_{x \in \{0,1\}^n} |x,f(x)>$

(as classical computation can be simulated in the quantum world).

Undo the Hadamard computation.

(If the Hadamard computation was undone at the stage with $\frac{1}{2^{\frac{n}{2}}} \sum_{x \in \{0,1\}^n} |x,0^n>$ we get $|0^n,0^n>$. But with $\frac{1}{2^{\frac{n}{2}}} \sum_{x \in \{0,1\}^n} |x,f(x)>$, the result is $\frac{1}{2^{\frac{n}{2}}} \sum_{x \in \{0,1\}^n} \frac{1}{2^{\frac{n}{2}}} \sum_{y} (-1)^{< x,y>} |y,f(x)>$.

Observe the tape.

In the NO instance, every string $\langle y, z \rangle$ is observed in $|y, f(x)\rangle$ since f is 1-1. So the state, $\frac{1}{2^n} \sum_{y,z} (\pm 1) |y, z\rangle$, is a uniformly distributed random sample.

In the YES case, f is approximately 2-1, so f(x) will only take on 2^{n-1} values.

If $\langle y, s \rangle = 1$, then

$$(-1)^{\langle x,y\rangle}|y,f(x)>+(-1)^{\langle x+s,y\rangle}|y,f(x+s)>=(-1)^{\langle x,y\rangle}(|y,f(x)>+(-1)|y,f(x)>)$$

as f(x+s) = f(x)

If $\langle y, s \rangle = 0$, then all possible 2^{2n-2} vectors $|y, f(x)\rangle$ are seen with equal amplitude. (There are 2^{2n-2} possibilities because half of the vectors are ruled out since f is 2-1 and half of the remaining are ruled out because $\langle y, s \rangle = 0$.)

Sampling from this circuit 2n times and writing the results y_1, \ldots, y_{2n} as a matrix, either we get y_1, \ldots, y_{2n} of rank n in the NO case or we get a rank of n-1 for the YES case.

1.3 Shor's algorithm

Intuition: Given n, pick a random $a \in \mathbb{Z}_n^*$. Then factoring n reduces to computing the order of $a \mod n$ (finding r such that $a^r - 1 \equiv 0 \mod n$). Simon's algorithm seems to compute periods of functions so perhaps it can be used to compute the period of the order function $f(i) = a^i$, ie. it can find r such that f(i+r) = f(i). Fix a, n and some q. Let $j \in \mathbb{Z}_q$ and define a unitary operator $|j\rangle \mapsto \frac{1}{\sqrt{q}} \sum_{k=0}^{q-1} e^{\frac{2\pi i}{q} j * k} |k\rangle$, similar to a complex Fourier transform.

Shor's algorithm:

Initialize the state to |0,0>.

Apply the unitary operator above to the first half and get $\frac{1}{\sqrt{q}}\sum_{j}|j,0>$.

Set the machine state to $\frac{1}{\sqrt{q}}\sum_{j}|j,f(j)>$, where f is the order function.

Apply the unitary operator to get $\frac{1}{q} \sum_{j} \sum_{k} e^{\frac{2\pi i}{q} j * k} |k, f(j)>$. Observe state.

Claim: k is very close to a multiple of $\left[\frac{q}{r}\right]$. (Proof omitted.)

Assume q = mr for some m.

Writing out $\frac{1}{q} \sum_{j} \sum_{k} e^{\frac{2\pi i}{q} j * k} |k, f(j)| > \text{as}$

$$\frac{1}{q} \sum_{j_1=0}^{\frac{q}{r}-1} \sum_{j_2=0}^{r-1} \sum_{k} e^{\frac{2\pi i}{q}(rj_1+j_2)*k} |k, f(j_2)> = \sum_{k} \sum_{j_2} |k, f(j_2)> e^{2\pi * i * j_2 * k} (\sum_{j_1=0}^{\frac{q}{r}-1} e^{\frac{2\pi i}{q} r * j_1 * k})$$

$$= \sum_{j_1=0}^{m-1} \left(e^{\frac{2\pi i}{m}k}\right)^{j_1} = \begin{cases} m & \text{if } k \text{ is a multiple of } m, \\ 0 & \text{otherwise.} \end{cases}$$
 (1)

Major issues:

1) q is not a multiple of r:

Get k such that $[kr]_q$ is very small contribute (handled by extending analysis and applying integer programming in O(1) variables).

2) q-ary Fourier transform is not always local:

In the case where q is a power of 2, can construct a small quantum circuit implementing any q-ary FT.