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1 Today

Recap of quantum computing model, Simon’s algorithm, Shor’s algorithm for factoring.

1.1 Quantum circuits

These are circuits with n different wires combined using quantum gates. A quantum gate is a map from
2% — 2k The Hadamard transform,“negation” and “and” form a sufficient collection of gates.
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The transition function for a quantum TM is a transition matrix and the tape consists of g-bits.

“Quantum polynomial-time”

BQP is, in some sense, an extension of BPP and EQP an extension of ZPP. BQP is the class of languages
that can be solved with a polynomial number of steps on a quantum TM, with completeness and soundness
as defined before. An equivalent definition is that BQP is the class of languages that can be solved by a
polynomial-sized quantum circuit which is constructible in classical polynomial-time.

1.2 Simon’s algorithm

This algorithm is for a promise problem where we are trying to decide whether a function f is 1-1.

The oracle is the function f : {0,1}"™ — {0,1}".

A YES instance is the case when f is not 1-1, ie. 3s € {0,1}" — {0} s.t. Vo f(z +s) = f(z D s) = f(z). If
such an s exists, f is at approximately 2-1.

A NO instance is the case that f is 1-1.

Suppose = |010111 > and apply H> to each of the bits. The outcome is 2% >

of the 28 possible outcomes has equal probability of occuring.

yefoyn (—1)<*¥7|y >. Each

Simon’s algorithm:
Initialize the quantum circuit to |0™,0" >.
Apply Hs to the first n bits and get 2% Eze{m}n |z, 0™ >.
Set the machine to QL% Yeefonyn |7, F2) >

(as classical computation can be simulated in the quantum world).
Undo the Hadamard computation.

If the Hadamard computation was undone at the stage with —1- » |2,0™ > we get [0™,0™ >.
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o But w}llth o >zefo1}n 1T, f(z) >, the result is T 2zefo1}n 3F LDy, f(z) >.)
serve the tape.
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In the NO instance, every string < y, z > is observed in |y, f(z) > since f is 1-1. So the state, 2%, Zy,z(:lzl)ky, z>,
is a uniformly distributed random sample.

In the YES case, f is approximately 2-1, so f(z) will only take on 2"~! values.

If <y,s >=1, then

(=D)<™y, f(z) > +(=1)<"Fy, f(z + 5) >= (=1)<"V(|y, f(z) > +(=D)|y, f(z) >)

as f(x +s) = f(z).

If < y,s >= 0, then all possible 22"=2 vectors |y, f(x) > are seen with equal amplitude. (There are 2272
possibilities because half of the vectors are ruled out since f is 2-1 and half of the remaining are ruled out
because < y,s >=0.)

Sampling from this circuit 2n times and writing the results y1, ..., y2, as a matrix, either we get y1,..., %2,
of rank n in the NO case or we get a rank of n — 1 for the YES case.

1.3 Shor’s algorithm

Intuition: Given n, pick a random a € Z}. Then factoring n reduces to computing the order of amodn
(finding r such that a” — 1 = Omodn). Simon’s algorithm seems to compute periods of functions so perhaps
it can be used to compute the period of the order function f(i) = a’, ie. it can find r such that f(i+r) = f(i).

1 2mij -
Fix a,n and some ¢. Let j € Z, and define a unitary operator |j >+~ % Ei:(l)e < k|l >, similar to a
complex Fourier transform.

Shor’s algorithm:
Initialize the state to |0,0 >.
Apply the unitary operator above to the first half and get % 22 13,0 >.

Set the machine state to f 2251, £() >, where f is the order function.

|k, f(5) >

Apply the unitary operator to get ; > ; Dok€ K
Observe state.

Claim: k is very close to a multiple of [2].
(Proof omitted.)

Assume ¢ = mr for some m.

Writing out £ 35,37, ¢TI |k, £(j) > as
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q j1=072=0 &k J1=0
e i m if k is a multiple of m,
=3 (e = . (1)
— 0 otherwise.
J1=0

Major issues:

1) ¢ is not a multiple of r:

Get k such that [kr], is very small contribute (handled by extending analysis and applying integer program-
ming in O(1) variables).

2) g-ary Fourier transform is not always local:

In the case where g is a power of 2, can construct a small quantum circuit implementing any g-ary FT.
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