6.841/18.405J: Advanced Complexity Theory May 15, 2002

Lecture 24
Lecturer: Madhu Sudan Scribe: Johnny Chen

1 Quantum Computing Wrap-Up

Recall that in the last lecture we saw Simon’s algorithm and Shor’s factoring algorithm. Today we consider
some other issues and offer concluding remarks.

1.1 Grover’s Algorithm

Suppose we have oracle access to a function f : [N] = {0,1} (here [N] = {1,...,N}), and we want to know
if there exists a x such that f(x) = 1. This is a prototypical NP-complete problem, so we do not hope to
solve in O(log N) time with a classical model of computation. But what about quantum computers? It turns
out that a quantum algorithm needs o(v/N) sequential queries to decide this problem [Bennett, Brassard,
Bernstein, Vazirani]. Grover proved this bound was tight by giving an algorithm using O(v/N) time, so it
seems that NP/ C BQF/. The algorithms of Simon, Shor and Grover therefore demonstrate that quantum
computing is definitely an interesting model to consider.

1.2 Problems and Pitfalls

It remains to be seen if a quantum computer can actually be built. Here we will consider some challenges.

Error Correction
Suppose we measure bits from a circuit by taking 0 to be -5V and 1 to be +5V. For small perturbations we can
still take accurate measurements: for example, we take +4.9V to be a 1. However, these small perturbations
accumulate, making the final measurements unreliable. In the classical model of computation two things
save us and allow for error correction. First is the transistor, which in our example naturally pushes output
close to £5V. The second is a simple mechanism in which we encode Os and 1s by repetition, so that 0
becomes 0---0 for example. As some of the 0Os are corrupted, we can correct these errors by periodically
considering the corrupted strings and changing them to 0---0 or 1---1 via majority vote. While this seems
rather basic, it is crucial to classical computation, and not possible in quantum computation! We cannot
measure periodically for self correction because the states will then collapse to a single one, destroying linear
superposition. Also, since processes must be reversible, we cannot destroy the string.

Shor gave an elementary quantum error-correcting code that corrects errors without destroying or mea-
suring the message. We will not discuss it, but it suffices to say results followed [AharanovBen-Or], [Shor],
[Kitaev] that consider what it means to build a fault-tolerant quantum computer.

Gates with Low Error

One assumption permeating quantum computing is that quantum gates can be built with error probability
at most 10~*. With this assumption we can assemble millions of such gates and perform real computations.
As yet, no one has been able to build even one gate with this accuracy.

Initializing and Resetting
In our description of quantum computation model, we have assumed that we can reset the input to a gate
to Os (erasing the work tape). But how is this done in a quantum computer? It turns out that this is a
nontrivial problem.

Physicists would say, it depends on the model. One particular model uses Nuclear Magnetic Resonance
(NMR), where cooling the circuit has a “cleaning” effect. However, if we wish to have 0 with probability
1 —p and 1 with probability p, the cost of cooling grows ezponentially with %. So to set n bits to 0 requires

24-1

Q(2™) energy; this erases the advantage of quantum computing. A proposed solution was given by Schulman
and Vazirani. They give an efficient procedure where circuits are cooled, and through preprocessing bits are
separated into “very cold” (pure 0s) and “very hot” to maintain entropy.

Other Work
The areas of quantum communication, quantum information theory, quantum cryptography and quantum
complexity are all quite active.

2 Complexity Wrap-Up

What have we learned this semester? Madhu’s view falls into two broad categories.

2.1 Lower Bounds
Some techniques we have seen are:
e Diagonalization
e Circuit Complexity
e Communication Complexity
Admittedly, lower bounds were not discussed so much this semester, because complexity theorists have not
been able to prove much (compared to the types of questions still open).
2.2 Identifying Computational Themes
We discussed some applications of Complexity theory.

e We abstracted some notions of games like Go, chess or Mahjongg and asked, for example, how does
playing Go against a master compare to computer Mahjongg?

e A repeating theme was to identify a computational resource, define a complexity class and find a
complete problem for this class.

e We explored some notions of proof, notably PCPs.

2.3 Topics Not Covered

Proof Complexity: Resolution
If we are given an unsatisfiable formula ¢(z1, ... ,z,), how can we prove that it is unsatisfiable? This is not
an implausible task: consider the formula

A(x1, T2, 23,24) =21 A(TTV 22) A (T3 V 23 V 24) A T3 AN Tq.

From the first two clauses, £2. Combining this with the third clause gives x3V x4. With the fourth clause, we
have x4, contradicting the last clause. Therefore ¢ is not satisfiable. Such an argument is called a resolution
derivation.

Certainly we do not expect a short resolution proof on all instances, since this would imply co-NP=NP.
An active area of research involves proving lower bounds for resolution. The first such papers appeared in
the 80s [Haken85].

Randomness
Complexity Theory has been quite successful at answering questions relating to randomness. The main

24-2

consideration in this area is the difference between actual randomness, measured statistically, and apparent
randomness, i.e., randomness required for computation.

Physicists believe randomness is everywhere. But how expensive is it? Consider three

‘worlds”:
1. Randomness is cheap
In this world, we can build randomized algorithms everywhere, and BPP rules.

2. Randomness is “somewhat” expensive
In this world, randomness comes at the cost of polynomial slowdown. Therefore we need to reduce
and recycle randomness. This area has had some nice results. For example, suppose that with a BPP
algorithm A, n random bits gives us error probability 1/4. How many random bits do we need for
error 1/167 An immediate upper bound is 2n, but it turns out that even with A as a black box, n + 2
random bits suffice. Indeed, for error 1/2% we need n + O(k) bits, where the constant has been pushed
to 2 + € for some e.

3. Randomness is infeasibly expensive
In this world, we must consider pseudorandomness - generating efficient objects with little or no
randomness that are computationally indistinguishable from truly random objects. An example of a
result in this area is the following

Theorem 1 (Impagliazzo, Widgerson) If every f € E = DTIME(2°™"™) that has circuit com-
plezity 2% then there exists a pseudorandom generator (= BPP=P).

A related question in this area is, what form does randomness take? We usually think of a random
source as being a sequence of random, independent coin flips. What if the source is “dirtier”? Specifi-
cally, for a random variable X on a set define the min-entropy H,, = min, log, Pr[X = z]~!. We will
think of a source X as “dirty” if we just know that H,, = k. The question becomes, can we produce
pure random bits from a dirty source? It turns out that we cannot - but if use a purely random seed,
we can. These objects are called extractors. One of the best extractor constructions uses n bits from
the source, a seed of length logn and outputs m = ek purely random bits (again, k is the min-entropy
of the source). There turns out to be a fascinating connection between extractors and pseudorandom
generators [Trevisan].

Knowledge

How do we formalize the notion of knowledge? Consider a message from Bob to Alice saying “I flipped a
coin, and it landed heads”. Intuitively, we know that Alice has received no knowledge from this statement:
she has learned of the existence of a coin that can land heads up, a fact she could have verified herself. But
when can we say knowledge has been exchanged in interaction? Indeed, the precise notion of knowledge was
a barrier for those designing cryptographic protocols. The seminal work of Goldwasser, Micali and Rackoff
[GMR] defined knowledge and zero-knowledge proofs (ZKP). The idea is that Alice has not learned anything
from Bob’s statement because she could have simulated it herself. While she may not be able to simulate it
exactly, she can simulate some kind of distribution.

24-3

