Course contents

- Classical resources: Time, Space, Nondeterminism.
- Alternation & the Polynomial Hierarchy.
- Non-uniform complexity & Lower bounds.
- Randomness and its power.
- Proofs, Interaction, Knowledge.
- Quantum computation.

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Classically ...

Resources Time, Space, Non-determinism.

Stopping points Logarithmic, Polynomial, Exponential.

Reductions?

- Karp vs. Turing.
- Logspace vs. Polynomial time.

Complexity Theory

Basic iteration:

- Identify resource; pick a gross bound on resource.
- Find points = problems.
- Draw arrows (reductions). $A \rightarrow B$, or $A \leq B$ if A reduces to B.
- In some cases rule out arrows.

Hopefully, get a map of all computational problems and complexities involved.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Turing reductions & Relativization

Definition: $L_1 \leq_T^p L_2$ if there exists a polynomial time Turing machine M that with access to an oracle for L_2 can solve the problem L_1 .

Languages vs. Problems Problems are general functions; Languages are Boolean functions. Turing reductions work generally. Their most powerful usage is to reduce general problems to languages.

Exercise Reduce SEARCH-SAT to SAT.

Relativization M above is an oracle Turing machine since it invokes an oracle O occasionally. Notation to describe this

duo: M^O . Here our focus was on what can O be used to do, when we vary M. In relativization, we often fix M (or the class it comes from) and vary O to see what can be done. Will see more next lecture.

Food for thought Why need Karp reductions? (Hint: two famed classes would be indistinguishable under Turing reductions.)

Classical classes

- Logarithmic space L.
- •
- Polynomial time P.
- •
- •
- Polynomial space *PSPACE*.
- Exponential time E/EXP.
- etc.

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Classical classes

- Logarithmic space L ?
- Nondeterministic Logspace NL STCON.
- Polynomial time P CktVal.
- Nondeterministic Polytime NP SAT.
- And much more to be inserted here.
- ullet Polynomial space PSPACE QSAT, Games.
- ullet Exponential time E/EXP Succinct SAT, Chess.
- etc.

Basic results

- Time Hierarchy theorem.
- Space Hierarchy theorem.
- Blum's speedup theorem.
- Any one remembers exact form?
- Diagonalization Tool #1 in proving absence of arrows.

Food for thought

- Given language in NP, can we decide if it is in P or not?
- Is every language in NP either in P or NP-complete?
- Is there a NTIME hierarchy theorem? What goes wrong with the usual proof?
- Is linear time a reasonable notion? How about nearly linear time?

Some other basic results

- Time(t) in NTime(t) in Space(t) (actually can do a bit better)!
- Space(s) in Time(2^s).
- Technically harder results:
 - NSPACE(s) in SPACE(s^2).
 - NSPACE(s) in coNSPACE(O(s)).
- Will prove above later today.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Big questions

P = NP?

1. Belief: $P \neq NP$.

2. Stronger belief: NP \neq co-NP.

- 3. Weaker beliefs:
- (a) $P \neq PSPACE$.
- (b) SAT not in L.
- (c) SAT not in nearly Linear Time.
- 4. Another belief: $L \neq P$.

We know at least one of 3(a) or 4 is true!

Will show one more such statement (hopefully).

Rest of lecture

Quick Review of

- Savitch's theorem.
- Immerman-Szelepscenyi theorem.

Savitch's theorem

Thm: For all space constructible $s(n) \ge \log n$, NSPACE $(s(n) \subseteq SPACEs^2(n))$.

Simplifying assumptions:

- Suffices to consider the case $s = \log n$.
- Suffices to show that STCON can be solved in space $O(\log^2 n)$.
- STCON:

Given: Directed graph G, vertices s,t. YES instances: There is a directed path from s to t in G.

• Suffices to let n be power of 2: $n = 2^k$.

daviten s theorem

STCON Algorithm

- Let A be the adjacency matrix of G.
- Suffices to compute A^n , where $A \cdot B$ denote Boolean matrix multiplication and $A^n = A \cdot A^{n-1}$.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Basic Lemma on Space

Basic Lemma: If $f,g:\{0,1\}^n \to \{0,1\}^n$ can be computed in space s_1 and s_2 respectively, then $f\circ g:\{0,1\}^n \to \{0,1\}^n$ can be computed in space s_1+s_2 (no big-Ohs!).

Proof: Omitted.

Lemma: Given A, the matrix $A^{2^{\ell}}$ can be computed in space $\ell \log n$.

Proof: Induction using Basic Lemma.

Savitch's theorem follows.

Immerman-Szelepscenyi Theorem

Thm: For all space constructible $s(n) \ge \log n$, co-NSPACE $(s(n)) \subseteq \mathsf{NSPACE}(s(n))$.

Idea:

- Suffices to prove co-STCON in NL.
- Key quantities:

$$\Gamma_\ell(s)=\{v\in V|\exists \ {
m path \ w. \ length} \le \ell \ {
m from} \ s \ {
m to}$$

$${
m COUNT}(s,\ell)=|\Gamma_\ell(s)|$$

• Central subroutine: $CHECK(u, \ell, COUNT)$.

Guarantee: If COUNT = COUNT($s, \ell - 1$), then OUTPUT = TRUE iff there is no path from s to u of length $\leq \ell$.

NL=coNL: Proof

 $\label{lemma:lem$

Proof:

- Inductively, compute $\mathrm{COUNT}(s,\ell)$ given $\mathrm{COUNT}(s,\ell-1)$ as follows:
 - Initialize COUNTs, $\ell = 0$.
 - For each $u \in V$ guess if $v \in \Gamma_{\ell}(s)$.
 - If Guess=YES, verify the guess and increment $\mathrm{COUNT}(s,\ell-1)$.
 - If Guess=NO, use CHECK $(u, \ell, COUNT(s, \ell-1))$ to verify guess.

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

. .

NL=coNL: Proof (contd.)

Lemma 2: $\mathsf{CHECK}(u,\ell,COUNT) \in \mathsf{NL}.$ Algorithm:

- Initialize COUNT-SO-FAR = 0;
- For every $v \in V$ do:
 - Guess if $v \in \Gamma_{\ell-1}(s)$.
 - If Guess= NO, do nothing;
 - If Guess= YES, (1) verify guess, (2) increment COUNT-SO-FAR, and (3) verify (v, u) is not an edge.
- Verify COUNT-SO-FAR = COUNT.
- Return(TRUE).

"Verify COND" \equiv Abort if COND is FALSE.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

10

Next lecture

- Relativization.
- Baker Gill Solovay theorem.
- ?