Course contents Complexity Theory

) ) Basic iteration:
e Classical resources: Time, Space, Non-

determinism.

e |dentify resource; pick a gross bound on
resource.

Alternation & the Polynomial Hierarchy.

Non-uniform complexity & Lower bounds. _ ]
e Find points = problems.

Randomness and its power. _
e Draw arrows (reductions). A — B, or

e Proofs, Interaction, Knowledge. A < B if A reduces to B.
e Quantum computation. e In some cases rule out arrows.
Hopefully, get a map of all computational
problems and complexities involved.
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Classically ... Turing reductions & Relativization
Resources Time, Space, Non-determinism. Definition: L1 <7 L, if there exists a
polynomial time Turing machine M that
Stopping points Logarithmic, Polynomial, with access to an oracle for L5 can solve
Exponential. the problem ;.
Reductions? Languages vs. Problems Problems are general
functions; Languages are Boolean

e Karp vs. Turing.

o functions. Turing reductions  work
e Logspace vs. Polynomial time.

generally. Their most powerful usage is
to reduce general problems to languages.

Exercise Reduce SEARCH-SAT to SAT.

Relativization M above is an oracle Turing
machine since it invokes an oracle O
occasionally.  Notation to describe this
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duo: MY. Here our focus was on what Classical classes
can O be used to do, when we vary 1. In
relativization, we often fix A/ (or the class
it comes from) and vary O to see what can
be done. Will see more next lecture.

Logarithmic space L.

Food for thought Why need Karp reductions?
(Hint:  two famed classes would be
indistinguishable under Turing reductions.)

Polynomial time P.

Polynomial space PSPACE.

Exponential time F/EXP.

e ctc.
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Classical classes Basic results

o 5
Logarithmic space . - * e Time Hierarchy theorem.

Nondeterministic Logspace N L - STCON. _
e Space Hierarchy theorem.

Polynomial time P - CktVal.
e Blum's speedup theorem.

Nondeterministic Polytime N P - SAT.
e Any one remembers exact form?

e And much more to be inserted here.
e Diagonalization - Tool #1 in proving
e Polynomial space PSPACE - QSAT, absence of arrows.
Games.

e Exponential time £//E X P - Succinct SAT,
Chess.

e etc.
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Food for thought

e Given language in NP, can we decide if it
is in P or not?

e Is every language in NP either in P or
NP-complete?

e Is there a NTIME hierarchy theorem? What
goes wrong with the usual proof?

e |s linear time a reasonable notion? How
about nearly linear time?
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Big questions

P = NP?
1. Belief: P # NP.

2. Stronger belief: NP # co-NP.

3. Weaker beliefs:

(a) P # PSPACE.
(b) SAT not in L.
(c) SAT not in nearly Linear Time.

4. Another belief: L # P.

We know at least one of 3(a) or 4 is true!

Will show one more such statement
(hopefully).
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Some other basic results

e Time(t) in NTime(t) in Space(t) (actually
can do a bit better)!

e Space(s) in Time(2%).

e Technically harder results:

— NSPACE(s) in SPACE(s?).
— NSPACE(s) in coNSPACE(O(s)).

e Will prove above later today.
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Rest of lecture

Quick Review of

e Savitch's theorem.

e Immerman-Szelepscenyi theorem.
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Savitch’s theorem

Thm: For all space constructible s(n) >
log n, NSPACE(s(n) C SPACEs?(n).

Simplifying assumptions:
e Suffices to consider the case s = logn.

e Suffices to show that STCON can be solved
in space O(log”n).

e STCON:

Given: Directed graph G, vertices s, t.
YES instances: There is a directed path
from s to t in G.

e Suffices to let n be power of 2: n = 2.
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Basic Lemma on Space

Basic Lemma: If f,g: {0,1}" — {0,1}" can
be computed in space s; and s, respectively,
then fog : {0,1}" — {0,1}" can be
computed in space s; + s2 (no big-Ohs!).

Proof: Omitted.

Lemma: Given A, the matrix A2" can be
computed in space /log n.

Proof: Induction using Basic Lemma.

Savitch’s theorem follows.
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STCON Algorithm

e Let A be the adjacency matrix of (.
e Suffices to compute A™, where A- B denote

Boolean matrix multiplication and A" =
A- AL
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Immerman-Szelepscenyi Theorem

Thm: For all space constructible s(n) >
logn, co-NSPACE(s(n)) € NSPACEO(s(n)).

Idea:

e Suffices to prove co-STCON in NL.

e Key quantities:

T'y(s) = {v € V|3 path w. length < ¢ from s to

COUNT(s, £) = [To(s)|

e Central subroutine: CHECK(u, /, COUNT).

Guarantee: If COUNT = COUNT(s, /¢ —
1), then OUTPUT = TRUE iff there is
no path from s to u of length < /.
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NL=coNL: Proof

Lemma 1: co-STCON in NL if CHECK in NL.
Proof:

e Inductively, compute COUNT(s, /) given
COUNT(s,¢ — 1) as follows:

— Initialize COUNTs, ¢ = 0.

— For each u € V guess if v € T'y(s).

— If Guess=YES, verify the guess and
increment COUNT (s, ¢ — 1).

— If Guess=NO, use CHECK (u, /, COUNT (s, {—
1)) to verify guess.
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Next lecture

e Relativization.

e Baker Gill Solovay theorem.

°?
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NL=coNL: Proof (contd.)

Lemma 2: CHECK(u,/,COUNT) € NL.
Algorithm:

e Initialize COUNT-SO-FAR = 0;

e For every v € V do:

— Guess if v € T'y_1(s).

— If Guess= NO, do nothing;

— If Guess= YES, (1) verify guess, (2)
increment  COUNT-SO-FAR, and (3)
verify (v,u) is not an edge.

e Verify COUNT-SO-FAR = COUNT.
e Return(TRUE).

“Verify COND" = Abort if COND is FALSE.
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