Today

- Diagonalization: Power & Problems
- Relativization
- Baker-Gill-Solovay
- Introduction to Alternation

Big picture in complexity

- E.g., Would like a complete map of complexity?
- Unfortunately: only one tool so far -Diagonalization.
- Diagonalization can prove:
 - Problems undecidable.
 - Space hieararchy, time hierarchy.
 - Ladner's theorem (between any two classes is an infinitely dense hierarchy).
 - But can it resolve $NP \stackrel{?}{=} P$?

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Preview of Ladner's theorem

- Suppose $P \neq NP$.
- Let $L_1 \in P$ and L_2 be NP-complete.
- Let $n_1 = 1$ and $n_i = 2^{n_{i-1}}$.
- Let $L=L_1$ for strings of length $[n_{i-1},n_i)$ for odd i, and $L=L_2$ for strings of length $[n_{i-i},n_i)$ for even i.
- $L \in P$? Probably not.
- ullet Is L NP-complete? Probably not.
- Ladner's theorem picks a more careful choice of n_i 's (by "lazy diagonalization"), to eliminate the "Probably's" above.

• Won't cover theorem in detail.

Power of diagonalization

- Can it resolve NP $\stackrel{?}{=}$ P?
- Question raised in the seventies.
- Baker-Gill-Solovay: No!
- Err.... some caveats

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

B-G-S Proposition

Prop: If diagonalization shows $C_1 \not\subset C_2$, then for every A, $C_1^A \not\subset C_2^A$.

Jargon: $C_1 \not\subset C_2$ relativizes.

Proof (of Prop/Jargon):

- Exists machine in C_1 that can simulate any machine in C_2 . (Since diagonalization works.)
- Augment this machine into an oracle machine.
- \bullet Machine now shows that C_1^A diagonalizes $C_2^A.$

Relativization

Defn: Let C be a complexity class of languages decidable with machines having a certain resource bound. Let A be any language. Then C^A is the set of languages accepted by oracle machines, with the same (similar?) resource bound as machines in C, having access to oracle for A.

Warning: Not really a definition!

Defn: P^A is the set of all languages accepted by deterministic polynomial time oracle Turing machines with access to oracle for A.

Defn: NP^A is the set of all languages accepted by non-deterministic polynomial time oracle Turing machines with access to oracle for A.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

BGS Lemmas

Lemma 1 There exists an oracle A such that $NP^A = P^A$.

Proof: Take some language that is sufficiently powerful. Example: Let A be any PSPACE-complete language. Then $NP^A = NPSPACE = PSPACE = P^A$.

BGS Lemmas

Lemma 2 There exists an oracle B such that $NP^B \neq P^B$.

Proof:

• Insert proof here.

BGS Warnings

 Proof makes sense only when specialized (to say P vs. NP).

- Otherwise, it is pedagogy, not mathematics.
- Only rules out very specific proofs. Minor variations not accepted!
- Often misinterpreted, mispresented, misrepresent etc.

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

10

Constructive use of relativization

- What happens when A is an interesting problem, and C an interesting class? C^A must be interesting too?
- Example we considered C = NP and A = PSPACE. What if A = NP? Is $NP^{NP} = NP$?
- No: actually get something new!

DNF Minimization

Defn: MINDNF is the language consisting of pairs (ϕ, k) , such that ϕ is a DNF formula such that no DNF formula with fewer than k literals is equivalent to ϕ .

Prop: MINDNF is in NP^{NP}.

Proof: Below is an NP oracle machine ${\cal M}$ that accesses a SAT oracle:

- ullet Guess a formula ψ with fewer than k literals.
- Ask SAT oracle if there exists an assignment x such that $\psi(x) \neq \phi(x)$.
- Accept if oracle says NO.

Note: we get the power to negate the oracles' response (or do any other polynomial time computation on it).

Introduction to Polynomial Hierarchy

 $\begin{array}{lll} \text{Defn:} & \Sigma_1^P = & \text{NP.} & \text{For} \ i > 1, \ \Sigma_i^P = \\ \cup_{A \in \Sigma_{i-1}^P} NP^A. & \Pi_i^P = \{\overline{L} | L \in \Sigma_i^P. & \text{PH} = \end{array}$ $\bigcup_{i>0} \Sigma_i^P = \bigcup_{i>0} \Pi_i^P.$

Belief: For every i > 0 $\sum_{i=1}^{P} \sum_{i=1}^{P}$.

Jargon: The Polynomial Hierarchy does not collapse.

More on the hierarchy later.

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Alternation

- The hierarchy gains its power by complementing responses of oracles.
- DeMorgan's Law =i instead of existential guesses, it can now make universal guesses.
- Suppose we built this into a Turing machine.
- Machine has two special states: \exists and \forall , both with two arcs leading out.
 - \exists state accepts if one of the two paths leading out accepts.
 - — ∀ state accepts if both paths accept.

- Alternation = Resource: write down computation tree: Count max. # times we alternate enter an \exists node and then a \forall node.
- This is a (valuable) resource!

Alternating complexity classes

bounded ATMs starting in existential state and making at most i-1 alternations.

- Three basic resources in ATM:
 - Time
 - Space
 - Alternations

Classes:

- ATIME[t] = Languages accepted by ATMs running in time t(n).
- ASPACE[s] = Languages accepted by ATMs using space s(n).
- (only of technical interest) ATISP[a, t, s]= ... a(n) alternations, t(n) time, and s(n) space.
- ullet PH: $\Sigma_i^P=$ languages accepted by polytime

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

7

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

. .

Basic theorems about alternations

Thm 1: ATIME $(f) \subseteq SPACE(f) \subseteq ATIME(f^2)$.

Thm 1: $ASPACE(f) = TIME(2^{O(f)})$.