Today

• Fortnow's time/space lower bound on SAT.

• PH: Complete problems and a hypothesis.

Power of Alternation

- Basic notion.
- Captures Time/Space differently.
- Next application shows how powerful it is.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Fortnow's theorem

For today, will use LIN to mean the class of computations in NEARLY-LINEAR TIME:

$$LIN = \cup_c TIME(n(\log n)^n.$$

- Belief: SAT $\notin L$.
- Belief: SAT $\notin LIN$.
- Can't prove any of the above.
- Fortnow's theorem: Both can not be false!

Proof of Fortnow's theorem

- For simplicity we'll prove that if $SAT \in Time(n \log n)$ and $SAT \in L$ then we reach a contradiction.
- Won't give full proof: But rather give main steps, leaving steps as exercises.

Main ideas

- Alternation simulates small space computations in little time. (Savitch).
- If NTIME(t) in co-NTIME(t log t), then alternation is not powerful.
- Formal contradiction derived from: ATIME[a,t] $\not\subseteq$ ATIME[a-1,t/log t].

Fortnow: Step 1

Fact 1: If L in NTIME(t), and x of length n, then can construct SAT instance phi of size $t(n) \log t(n)$ such that x in L iff phi in SAT.

Reference: a 70's paper of Cook.

Proof: Left as exercise.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Fortnow: Step 2

Fix a(n) = sqrt(log n).

Fact 2: ATIME[a,t] is contained in NTIME[t $(\log t)^{2a}$]

Proof: Induction on #alternations + Fact 1.

Fortnow: Step 3

Fact 3: If SAT in L, then NTIME[t $(\log t)^{2a}$] in SPACE(log t + a log log t).

Proof: Padding

Fortnow: Step 4

Fact 4: SPACE[s] in ATISP[b,2^{(s/b)},bs] in ATIME[b,2^{(s/b)}]

Proof: Exercise 3 of PS 1.

Whither contradiction?

- If we set b = a-1 (approximated by a in our calculations), then ...
- ATIME[a,t] is contained in ATIME[b,2^(logt+aloglo) which is a contradiction.

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

10

Polynomial Hierarchy

Recall definitions

- Σ_i^P = Languages accepted by polynomial time bounded ATM starting in existential state with i alternating quantifiers.
- Π_i^P = Languages accepted by polynomial time bounded ATM starting in universal state with i alternating quantifiers.
- $PH = \bigcup_{i|>1} \Sigma_i^P$.
- Convention: $\Sigma_0^P = \Pi_0^P = P$.
- PH "discovered" by Meyer & Stockmeyer.

PH: Simple properties

- $\Pi_i^P = \{L | \overline{L} \in \Sigma_i^P \}.$
- $\Pi_{i-1}^P \subseteq \Sigma_i^P \subseteq \Pi_{i+1}^P$.
- PH = $\bigcup_{i \geq 1} \Pi_i^P$.
- As in assertion "TQBF is complete for PSPACE", can postpone all computations to the end; and can assume final computation simply verifies if a 3-CNF formula is satisfied.
- Σ_i^P Complete problem:

$$i\text{-QBF} = \{\phi | \exists \mathbf{x}_1 \forall \mathbf{x}_2 \dots \phi(\mathbf{x}_1, \dots, \mathbf{x}_i) = \mathsf{true} \}.$$

- $\Sigma_1^P = NP; \Sigma_{i+1}^P = NP^{\Sigma_i^P}.$
- $\bullet \ A \in \Sigma_{i+1}^P \Leftrightarrow \exists B \in \Pi_i^P, c < \infty \text{ s.t.}$

$$x \in A \Leftrightarrow \exists y, |y| \le |x|^c, (x, y) \in B.$$

A non-trivial theorem

Theorem[Umans '2000]: MINDNF is Σ_2^P -complete.

Conjectured since the discovery of PH.

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Why PH interests us

- Good question. Should ask about every class.
- Motivation 1: MINDNF. But why consider the entire infinite hierarchy.
- Motivation 2:
 - Tests our ability to work with alternation.
 - We know a lot about quantifiers, but don't know how to eliminate even *one* quantifier!
 - Belief: Can not remove quantifiers!
 - A stronger belief than NP $\neq P$, NP \neq co-NP etc.
 - Many complexity theoretic assertions can be proved under this belief.

PH collapse hypothesis

Hypothesis: For every i, $\Sigma_i^P \neq \Pi_i^P$.

 $\begin{array}{l} \text{Proposition: For } i \leq j, \\ \Sigma_i^P = \Pi_i^P \Rightarrow \Sigma_j^P = \Pi_j^P = \Sigma_i^P = \Pi_i^P. \end{array}$

Proof:

- By induction on j. True for j=i. Let j>i and assume true for j-1.
- $\begin{array}{c} \bullet \ \ \mathrm{Let} \ A \in \Sigma_{j}^{P} \ \mathrm{and} \ \mathrm{let} \ B \in \Pi_{j-1}^{P} \ \mathrm{s.t.} \\ x \in A \Leftrightarrow \exists y \ \mathrm{s.t.} \ (x,y) \in B. \end{array}$
- By induction $B \in \Sigma_i^P$ and so $\exists C \in \Pi_{i-1}^P$ s.t. $(x,y) \in B \Leftrightarrow \exists z \text{ s.t. } (x,y,z) \in C$.
- So $x \in A$ iff $\exists y, z$ s.t. $(x, y, z) \in C$. Thus $A \in \Sigma_i^P$.