Today

e PH collapse hypothesis.
e Circuit complexity

e Karp-Lipton Theorem

Madhu Sudan, : 1

Collapse of the PH

Proposition: For ¢ < 7,
»W=I=xl =07 =% =1}.

Proof:

e By induction on j. True for j = i. Let
J >4 and assume true for j — 1.

o Let A € Ef and let B € Hf_l s.t.
z € A& Jyst. (z,y) € B.

e By induction B € ¥ and so 3C € I |
st. (z,y) € B< 3z st (z,y,2) € C.

e Soz e Aiff Jy,z sit. (z,y,2z) € C. Thus
Aexl.

Madhu Sudan, : 3

PH collapse hypothesis

Jargon: Hierarchy “collapses” if ¥ = T17.

Hypothesis: Hierarchy does not “collapse”,
i.e., For every i, Ef #* HlP.

Why “collapse”? Next proposition explains.

Madhu Sudan, : 2

PH collapse hypothesis

Why do we like it?
e Can't prove it false!

e |t implies many other things we believe.

e Examples:

— NP has randomized polynomial time
algorithms implies hierarchy collapses.

— NP has sparse complete language implies
hierarchy collapses.

e Today's example: NP has small circuits
implies hierarchy collapses.

Madhu Sudan, : 4



Circuit complexity /Non-uniform
computation

e Does solving a problem become much easier
if we only have to design an algorithm to
work for one fixed n at a time?

e Certainly, if the language is unary!
e But not necessarily if languages are binary!

e How do we measure running time in this
case?

— Design a family of “algorithms”: one for
each n and study runtime as function of
n.

Madhu Sudan, : 5

Boolean circuits

e Circuit is a DAG (directed acyclic graph).

e Node categories:

— Input gates: Distinct labels 1 to n.
— Qutput gates: Distinct labels 1 to m.
— Computation gates: AND, OR, NOT.

e Wires: Run between gates.

— Input gates have no wires coming in.

— Computation gates have one (if NOT),
or two (if OR/AND), wires coming in.

— Output gates have no wires going out.

e Size = # of gates. (Sometimes allow
unbounded fan-in OR/AND gates: in such
case size = # wires.)

Madhu Sudan, : 7

— Equivalently: design a family of
“circuits”, one for each n and study
circuit size as function of n.

— To meaningfully study questions such as
“Is NP=P?", restrict circuit size to be
polynomial in n.

Madhu Sudan, : 6

e Circuit computes a function f : {0,1}" —
{0,1}™.

e Our interest: E.g. smallest circuit deciding
SAT (m =1).

Madhu Sudan, : 8



Turing machines with advice

e Alternate interpretation of non-uniform
computation: Give “advice” to a Turing
machine.

e Fix a polynomial p. Let aj,a9,... with
an € {0,1}*(™ be advice strings. Given
x € {0,1}™, an advice Turing machine M
uses the advice a,, to determine if x € L or
not.

Defn: L € P/poly if there exists a polynomial
time bounded Turing machine M, polynomial
p and advice strings ai,...,an,... with
lan| < p(n) such that for every z € {0, 1}*,

re€Ll& Mz,a,)=1

Madhu Sudan, : 9

Circuit complexity

e Given Boolean function family {f,}. with
fn :{0,1}™ — {0,1} show lower bounds
on smallest circuit computing f,,.

e Hope: Can show NP # P by showing NP &
P /poly-

e Wait - what?
e P/yo1y includes undecidable languages!

e Why should it not just contain NP, if it is
so powerful!

e Karp-Lipton: Non-uniformity is not too
powerful in deciding uniform languages.
Specifically:

Madhu Sudan, : 11

Can think of a,, as describing circuit, and
M (z,a) computes value of circuit a on input
x. Conversely, given any advice a and poly-
time TM M, can build poly-sized circuit that
determines value of M on input x and advice
a. Thus P/,aly is the class of languages with
polynomial sized circuit family.

Madhu Sudan, : 10

Thm: If NP C P/,01y then PH collapses.

Madhu Sudan, : 12



Karp-Lipton

Assume M is an advice TM deciding SAT.

Defn:  a, is GOOD if M(¢,a,) decides
¢ €SAT?.

Karp-Lipton Lemmas:
Lemma 1: GOOD is in TIZ.
(Wonderful: we have shown NP is in PH!)

Lemma 2: If NP C P/,01y and GOOD is in
Note: deliberately ignoring the fact that we
know GOQD is very low. We don't need it to

collapse the hierarchy.

Madhu Sudan, : 13

Proof of Lemma 2

Lemma 2: If NP C P/,0y and GOOD is in
17, then &7, =20 ..

Proof: Will show (i + 2)-QBF in X7 .
Assume for simplicity that ¢ is odd.

Basic idea: Given formula ¢ where we wish
to decide if

Ix1Vxy .. 3Ix0(xq, ..., %) =1,

we'll quantify over x; to x;—1 and let
Y(x;) = ¢(x1,...,%x;) be the remaining
formula. We'll then use a GOOD string a,
and determine if M (¢, a,) = 1.

How do we find a GOOD string? We
guess it along with x; and in parallel to the

Madhu Sudan, : 15

Proof of Lemma 1

Lemma 1: GOOD is in 1%
Proof: a,, is GOOD, if

Vi, M(Y,a,) =1= Jast. pla)=1

M(3,a,) = 0= ¥By(5) = 0.

Equivalently:

Vi, BIa s.t. ((M(¢,a,) =0)Vy(a)=1)
AM (3, an) = 1) V9(B) = 0)).

Madhu Sudan, : 14

computation determing if ¢ is a YES instance,
we'll check if a,, is GOOD.

Madhu Sudan, : 16



Formal Proof

¥, computation for ¢:
e GUESS x1,a,

e FORALL Verify a,, is GOOD
Verify Vxo, dx3,... ,VX;_1
M,a,) = 1 where () =
Qb(Xl, e ;Xi—l)-

Madhu Sudan, : 17

Non-uniform complexity

Why would it be easier to show NP P/,
than to show NP # P.

e Circuit lower bounds more combinatorial.
e Can show circuit lower bounds by counting.
e Other sophisticated techniques available.

e Unfortunately: No explicit functions (in
NP) with superlinear lower bound.

e Better lower bounds exist for high
complexity; but based on diagonalization.

Madhu Sudan, : 18



