Today Big goal

- Circuit lower bounds
- Parity does not have constant depth circuits
- Would like to show exponential lower bounds on circuit size for functions in NP.
- Best we've been able to show is exponential lower bounds on constant depth circuits.
- References:
 - Furst, Saxe, Sipser '83.
 - Yao '85.
 - Hastad '87.
 - Smolensky '88.
- Today: Smolensky's proof.

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Circuit depth

- Depth of a circuit is the length of the longest path from input to output.
- ullet Today we consider AC_0 : the class of circuits with unbounded fan-in OR, and AND gates, and constant depth.
- Depth represents parallel time. Unbounded fan-in represents concurrent writing on shared memory cells.
- "Lowest level of complexity".

Parity function

For every n, $\bigoplus_n : \{0,1\}^n \to \{0,1\}$ represents the parity of n bits (or sum modulo two).

Goal for today:

Theorem: If \bigoplus_n has a circuit of depth d then it must have size $2^{n^{\Omega(1/d)}}$.

Main tools

- Vector spaces over \mathbb{Z}_3^n .
- Polynomials over \mathbb{Z}_3^n .
- Randomness.

Parity and polynomials

- $\mathbb{Z}_3 = \{-1, 0, +1\}$ (Arithmetic mod 3, but think of 2 as -1.)
- Two representations of the Boolean world: $\{0,1\}$ and $\{+1,-1\}$. $(0\leftrightarrow 1;\ 1\leftrightarrow -1.)$
- $x \mapsto 1 2x$ and $(1 y)/2 \leftarrow y$.
- Then $\bigoplus_n : \langle x_1, \ldots, x_n \rangle \mapsto \prod_{i=1}^n x_i$.
- In general think of $f:\{0,1\}^n \to \{0,1\}$ and $f:\{+1,-1\}^n \to \{+1,-1\}$ as functions mapping $\mathbb{Z}_3^n \to \mathbb{Z}_3$.

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Polynomials over \mathbb{Z}_3

Fact: For every $f:\{0,1\}^n \to \{0,1\}$, can find polynomial $q:\mathbb{Z}_3^n \to \mathbb{Z}_3$ such that q has degree 1 in each variable and agrees with f on $\{0,1\}^n$.

Similar fact for $f: \{-1,1\}^n \to \{-1,1\}$.

Main Lemmas

Lemma 1: If $f:\{0,1\}^n \to \{0,1\}$ is computed by a depth d circuit of size s, then there exists a set $S\subseteq \{0,1\}^n$ of size $|S|\geq 3/42^n$ such that $f:S\to \{0,1\}$ computed by a polynomial over \mathbb{Z}_3 of degree $(\log s)^{O(d)}$.

Lemma 2: If there exists a degree polynomial D $p: \mathbb{Z}_3^n \to \mathbb{Z}_3$ such that $p(x) = \bigoplus(x)$ for all $x \in S$, then every Boolean function $f: S \to \{0,1\}$ is computed by polynomials of degree n/2 + D.

Lemma 3: Any set of functions generating all $f:S \to \{0,1\}$ must have at least |S| members.

Using lemmas to prove theorem

- Assume parity has depth d, size s circuit.
- By Lemma 1, parity is computed by polynomial of degree $(\log s)^{O(d)}$ on set S of size $3/42^n$.
- By Lemma 2, every Boolean function on S is a polynomial of degree $n/2 + (\log s)^{O(d)}$. Thus this set of functions is contained in a vector space over \mathbb{Z}_3 of dimension at most $\sum_{i=0}^{n/2+(\log s)^{O(d)}}\binom{n}{i} \leq 2^{n-1} + (\log s)^{O(d)}2^n/\sqrt{n} < 3/42^n$. (Provided $s \leq 2^{n\Omega(1/d)}$.)
- By Lemma 3, this space of functions has dimension at least $|S| \ge 3/42^n$.

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

We have a contradiction

Proof of Lemma 3

- Let $\delta_x(y) = 1$ if x = y and 0 o.w..
- The functions $\{\delta_x:S\to\{0,1\}|x\in S\}$, are linearly independent.
- Simple linear algebra.

Proof of Lemma 2

- Will switch back and forth between 0/1 and ± 1 .
- Suppose $\bigoplus: S \to \{0,1\}$ is represented by a polynomial $q: \mathbb{R}^n \to \mathbb{R}$. Let $T \subseteq \{+1,-1\}^n$ be the associated set. Then $\prod_{i=1}^n x_i = 1-2q((1-x_1)/2,\dots,(1-x_n)/2)$ on the set T.
- Consider Boolean function $f: S \to \{0, 1\}$. Let $g: T \to \{+1, -1\}$ be associated function. Represent g by a polynomial in its arguments. $p(\mathbf{x}) = \sum_i \alpha_i A_i + \sum_j \beta_j B_j$ where A_i are terms of degree less than n/2 and B_j 's are terms of degree greater than n/2. Let $C_j = \prod_{i=1}^n x_i/B_j$. Then $p'(\mathbf{x}) = \prod_{i=1}^n x_i/B_i$.

 $\sum_{i} \alpha_{i} A_{i} + q(\mathbf{x}) \sum_{i} \beta_{j} C_{j}$ also represents gand is a polynomial of degree at most n/2 + D.

• The polynomial $r(\mathbf{x}) = (1 + p(1 - 2\mathbf{x}))/2$ represents f.

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Prob. polynomial for the OR function

Naive answer: $OR(y_1, \dots, y_k) = 1 \prod_{i=1}^{k} (1-y_i)$. Answer is always right. But degree is k - too much.

Step 1: Get the answer right w.p. 1/2 with polynomials of degree 2.

Basic idea: pick $a_1, \ldots, a_k \in \mathbb{Z}_3$ at random. $p_{\mathbf{a}}(\mathbf{y}) = \sum_{i=1} a_i y_i$.

Claim 1: $p_{a}(0) = 0$.

Claim 2: $\Pr_{\mathbf{a}}[p_{\mathbf{a}}(\mathbf{y}) = 0] \le 1/3$.

Proof: Let $Q(\mathbf{z}) = \sum_{i=1}^k y_i z_i$. Q is a nonzero polynomial of degree 1 in its argument. Evaluation at random z = a leaves it nonzero.

Proof of Lemma 1

- This is the hard lemma. (Though the linear algebra is also very novel.)
- But is seen again and again in complexity.
- Basic idea: Fix input x_1, \ldots, x_n and randomly replace every gate by a polynomial of low-degree. Show the resulting circuit still computes the original value with probability at least 3/4.
- Use the probabilistic method to conclude there exists a collection of polynomials which computes the original function on 3/4ths of the input.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Prob. polynomial for the OR function (contd.)

The polynomial $p_{\mathbf{a}}^2$ is always 0 or 1 and computes the OR function on any fixed input w.p. 2/3.

Pick a_1, \ldots, a_l , and take the OR of polynomials $p_{\mathbf{a}_i}$.

Gives degree 2ℓ polynomial that is right w.p. $1-(2/3)^{\ell}$.

What we gained? Will pick $\ell = \log s$ to make degrees logarithmically smaller than fan-in.

What we lost? Not guaranteed to be right.

Prob. polynomial for circuit

- ullet Replace every gate by degree 2ℓ poly randomly.
- Resulting circuit computes a polynomial of degree $(2\ell)^d$.
- Prob. it gets the output wrong (for fixed input) is at most $s(1/3)^{\ell}$.
- Lemma follows.

Conclusions

- Algebra, arithmetization, randomness very powerful tools.
- Work in situations where there's no mention of them in problem statement.
- Many more examples in course.
- Unfortunately, know little else?