Today

e Valiant-Vazirani Thm: USAT < SAT.
e Counting problems: P#P.

e Toda's Theorem: PH in P#P.
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Pairwise independent hash families

Defn: H C {f : {0,1}" — {0,1}™} is
pairwise independent family if for all a #
b e {0,1}" and ¢,d € {0,1}™

hfe’%[h(a) =c AND h(b) =d] = (1/2™).

H is nice if h € H can be efficiently sampled
and efficiently computed.

Example: Pick A € {0,1}"*™ and b €
{0,1}™ at random. Let h4(xz) = Az +b.
Then H = {hap}ap is a nice, pairwise
independent family.

Proof: Exercise.
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Formalizing the problem

Unique SAT: USAT = (USATYEs, USATN())Z
USATvygs = {¢|¢ has exactly one sat.
assgmnt.}.
USATno = {¢|¢ has no sat. assgmnts.}.

Valiant-Vazirani Theorem: USAT € P
implies NP = RP.

Proved via the following lemma.

Lemma: There exists a randomized reduction
from SAT to USAT.

¢ — 1 such that ¢ € SAT implies ¥ €
USATno. qb € SAT implies ¢ € USATvEs
with probability 1/poly(n).

Madhu Sudan, : 2

Randomized reduction from SAT to
USAT

Given ¢:
e Pick m € {2,... ,n+ 1} at random (and
hope that # satisfying assignments is

between 2™~2 and 2™~1))

e Pick h at random from nice p.w.i. family
H.

o Let Y(z) = ¢(z) A (h(z) = 0).

e Output 2.
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Analysis

Let S = {z|¢(z)}.
Hope: 2m~2 < |§| < 2m—L.
Claim: Pr,,[ Hope is realized | > 1/n.

Proof: Claim is true for some m € {2,... ,n+
1}. Prob. we pick that m is 1/n.
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PralGa] > 1/2m — |S]/4m.
PrylU,Ga] > |S]/27(1 - |S]/2™) > 1/8.
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Analysis (contd.)

Claim: Prp[ Exactly one z € .S maps to 0 —
Hope | > 1/8.

Define G,: Event that x maps to 0 and no
other y € S maps to 0.

Prob. we wish to lower bound is (conditioned
on Hope):

PrpUsesGa] = 3, PralGq]

(since G;'s are mutually exclusive).
Prplh(z) = 0] =1/2™,

Prp[h(z) = 0 and h(y) = 0] = 1/4™.

Prp[h(z) = 0 and Jy € S — {z}, s.t.h(y) =
0] < |S|/4™.
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Concluding the analysis

With probability 1/8n reduction produces
with exactly one satisfying assignment. If you
can decide satisfiability in such cases then
can decide satisfiability probabilistically in all
cases.
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Counting classes

Given NP machine, how many accepting paths
does it have?

#P is class of functions f : {0,1}x — Z=2°
such that there exists a machine M(-,)
running in polytime in first input such that

for every z, f(x) = {y|M(z,y)}.

P#P is class of languages decidable with

oracle access to #P functions.

Very important class: Has usual complete
functions #SAT, # Hamiltonian cycles, and
also # cycles in digraph.

Most novel: # matchings in bipartite graph;
also permanent of non-negative matrix.
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Proof of Toda’'s Theorem

Main ingredients:

e Operators on complexity classes.
e Closure properties.

e Randomness

e Algebra

e Blah Blah Blah
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How powerful is P#F?

p#P ¢ PSPACE.

BPP C P*#P.

NP C p#P.

co-NP C P#P.

What about 2?7 Open till Toda's theorem.
Thm [Toda]: PH C P#F.

No known reasons to believe P#P =+
PSPACE. (Can you prove anything?)
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Operators on complexity classes

An “operator” maps a complexity class into a
related one.

A short list: -, 3, V, BP, €p.
C—0O-C.

— - C is simple: complements of languages in

C.

In all other cases, think of machines in C as
two input machines and operator shows how
to quantify over second input.

e 1, does there exist second input?

e Y, for every second input.
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o (P: for odd # of second inputs, e BP-P = BPP.

e BP, for at least ¢(n) fraction of second
input if x € L versus at most s(n) if z & L,
where ¢(n) — s(n) > 1/poly(n).

(Sample) definition:

L € @ -C if there exists a machine M (,-) €
C (whose second input should be polynomial-
length in the first input) such that w € L &
{z|M(w,z)}| is odd.

Example operations:

e J-P =NP.
o V.-P = co-NP.
o3.2P=3"F
oV.-XL =110,
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Toda’s theorem steps Toda’s theorem (contd.)
1 E’LP CBP-@ 'Hllj—r Completely separate theorem:
" CBP-@ 10j_ ;. Theorem: BP-@-P C p#P,

(Extends Valiant-Vazirani.)
Today All but amplification and second part

2. BP - @ -P amplifies error. of Toda’s theorem.
(Subtle.)

3.)-BP--PCBP-P-P-PCBP-G-P.

(Surprising, but straightforward.)

4. BP-BP--PCBP--P.
(Not surprising. Straightforward.)

After all the above:

Theorem: PH C BP - -P.
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Simple steps

»PCBP-@IIF

Easy extension of Valiant-Vazirani.

Take i-TQBF. 3x; - - - Q;x;0(x1, - - . ,X;).
Pick p.w.i. hash function h and now consider
H#x, s.t. Vxg...¢(---) Ah(x;) =0.

#=0if ¢ ¢i-TQBF; # =1 if ¢ € - TQBF
(w.p. 1/poly(n)).

Done!
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Simple steps (contd.)

BP-BP-C C BP-C.
(Assuming C allows amplificiation of BP -C.)

Draw two level circuit with BP gate atop
many BP gates. Wires at top level labelled y.
Wires at bottom level labelled z. Inputs are

M((z,y), 2).

First BP gate computes correct answer w.p.
c(n) > s(n) + 1/poly(n). Second BP gate
computes correct answer w.p. 1 — 27",

Let M'(z, (y, 2)) = M((2,y), 2)-

If original computation accepts, then M’
accepts w.p. at least ¢(n) — 27",
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Simple steps (contd.)
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(Last step: Can create machine M’ that
accepts one more input than M)
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If original computation rejects, then M’
accepts w.p. at most s(n) +27".

Still inverse polynomially far.
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Slightly harder example

@ BP-CCBP-@C.
(assuming C allows amplification.)

Let fanout of parity gate be 2™. Will make
sure error probability of bottom BP gates is
at most 272™. (Strong amplification.)

Draw two level circuit with € gate atop
many BP gates. Wires at top level labelled y.
Wires at bottom level labelled z. Inputs are

M((z,y), 2).

Let M'((z,2),y) = M((z,y),2). Draw
circuit with BP gate atop many € gates.
Inputs are M'((z, 2),y).

Let fanout at bottom be 2t Let
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Next lecture

Will show amplification of € P.

That will conclude proof of PH C BP - € -P.

Then will show BP - @ -P C P#F.
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N(y) = majority {M((z,y),2)}. Let O =
D, V). Let 0. =P, M'((z,2),y).

Idea: Most O.,'s are correct anyway.

Say (y, z) bad if N(y) # M((z,y),z). Note:
Number of bad pairs < 2t+tm . 272m < g9t—m

Say z is bad if Jy s.t. (y, z) is bad. # of bad
2's < 2t=m,

If z is not bad O, = O. Modified circuit still
computes function correctly w.h.p. (all but
27™).
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