Today

Power of the prover: IP C PSPACE.

IP[poly] C AM[poly].

IP[k] C AMIK].

Start IP = PSPACE.
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IP C PSPACE

Simple consequence of the explicit form of
the optimal prover:

Proposition: IP C PSPACE.

Proof: Can compute “probability of
acceptance by optimal responses” in PSPACE.
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The optimal prover

e Given a fixed verifier, what should a prover
do?

e Can figure out what to do, optimally, by
computing the following quantity:

e Given a history of interactions so far, what
is the highest probability, over all provers,
of the verifier accepting.

e Can compute this by induction on number
of remaining rounds.

e Prover that does this is the optimal prover.
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IP[poly] = AM[poly]

e Lets draw the interaction tree:

— Nodes correspond to history so far:
questions asked and optimal answers.

— Edges between history and its immediate
SUCCESSor.

e Assume w.l.o.g. that questions are all
binary, and given a path to leaf, there is a
unique random string leading to this path
(achieved by verifier announcing its random
string after the protocol).

e Label leaves as accept/reject.

e | abel node with # accepting leaves.
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e Verifier's goal: Verify label of root is at
least 2/3x # random strings.
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IP[poly] = AM[poly]

Let N, denote actual # accepting leaves in
subtree.

e Claim: Prob. verifier given at u accepts
< Nu/Ly.

e Claim: If Nyoot > 2/3% # random strings,
then setting L, = N, for every u, gives
proof that is accepted with probability 1.

e Thm: IP[poly] = AM|poly]-one-sided.
(Theorem above due to [Goldwasser-Sipser]

+ [Furer-Goldreich-Mansour-Sipser-Zachos].
Proof due to [Kilian].)
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IP[poly] = AM[poly]

e Starting with root, and going down some
path in the tree, Arthur repeats the
following:

e Inductively, Arthur has a lower bound L, on
label of current node u. Arthur asks prover
for optimal answers to two children, and
labels L, and L,, of corresponding nodes v
and w.

e Arthur verifies L,, + L, > L,. Verifies
v with probability L,/(L, + L,,) and w
otherwise.

e At root Lot = 2/3X # random strings.
At leaf, verify verdict is accepting.
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AM proof for approximate set size

Suppose S C {0, 1}" has size either | S| >BIG
= 2™ or at most SMALL = 2™ /100, where
e.g., m = y/n. Further z € S7 can be
determined by Arthur on its own.

Can Merlin convince Arthur that S is BIG?

[Goldwasser-Sipser] give AM protocol for
above.
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Goldwasser-Sipser protocol

Protocol: (reminiscent of Sipser-Lautemann)

e Merlin picks (random) hash function h :
{0,1}™ — {0,1}™~*. and sends to verifier.

e Arthur picks y € {0,1}™~* at random and
sends to Merlin.

e Merlin responds with z € S such that
h(z) =y.
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IP[k] C AM[K]

Will only prove IP[1] C AM[O(1)]. Extension
to general k similar.

e Fix verifier with completeness 2/3, and
soundness 1/poly.

e Let () be set of possible questions.

e For g € @, let S, be set of random strings
that lead to question g being asked, where
optimal prover leads to acceptance.

e Let r be length of random strings.

e So either > oIS = (2/3)27,
2_qeq 94l < 1/poly(r).
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Goldwasser-Sipser protocol

Claim: If A is chosen from a nice p.w.i. family
of hash functions, and |S| > 2™, then for 2/3
of y's, there exists z € S such that h(z) = y.

Claim: If |S| < 2™/100, then no matter
which h we pick, at most 16/100 < 1/6 for
the y's have x € S such that h(x) = v.
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e For simplicity assume |S,| = 0 or 2! for
every .

e Will run two G-S protocols back to back.

e Will ask Merlin to prove #gq such that
|S,| = 2" is at least (2/3)27 .

e To do so, Merlin send h, Arthur queries
with y and Merlin sends ¢ € @ such that

h(q) = y.

e Arthur still needs to verify |S,| > 2!. Does
this with another G-S protocol.

e Working out details .... get theorem.
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One-sided error?

Can get one-sided error protocols using more
ideas from Lautemann-Sipser. (Pick many
hash functions; one of them always has a
pre-image.)

Corollary: Can prove graph non-isomorphism
without error or private coins! Can you come
up with elementary protocol?
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Arithmetizing SAT

Literal polynomials: z — z, T — (1 — ).

Clause polynomial: C(z,y,z) converted to
P(z,y,z); zVyVz — 1—(1—z)(1—y)(1—=2).

SAT  polynomial: d(x1,y...,xy)  —
Q(z1, ... ,zn) where Q(x) = [[im, Pi(x) if
¢ =N",C;.

Property Q(z1,...,z,): for a € {0,1}",
Q(a) =1 if a satisfies ¢ and 0 otherwise.

@ is a polynomial of degree m in each variable.

#o = Eae{o,l}n Q(a).
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#P C PSPACE

Still don't have a way for Merlin to convince
Arthur that there's so seating for the round-
table!

Will work towards that today.

Not so far from Kilian's proof .... Just one
more trick!
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#SAT tree & Q-tree

Draw tree of ()-values:

Root = value of 3, (o 130 Q(a).

Node = value of sum on suffix, with prefix
set to some fixed value.

Qv = ZCG{O,I}? Q(b,c).
Verifier verifies Qp, = Qno + Qb1-
Now need to to verify Qpp and Qps.

Can't afford to do this!
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#SAT in IP IP protocol for #SAT

Recursively Arthur is verifying: Qp = K(

Will arbitrarily consider @y, for every b € Z; ap)
mod p).

for some prime p.

What meaning does it have? None seemingly, Consider the function py(z) = ZCG{OJ}? Q(b,z,c)
but @y, is well defined! P is a univariate polynomial of degree m.
Suppose prover claims Q) = #¢ = N. Will Arthur asks Merlin for py(x).

ask prover to prover @ = N(' mod p). Merlin responds with h(zx).
Arthur verifies A(0) + h(1) = K.

Arthur picks random o € 7Z, and sends to
Merlin,

Now recursively verify Qno = h(a).

At end Arthur can compute verify Qp = K,

since Qn = Q(b).
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Soundness

Completeness obvious.

For soundness, will claim:

Claim: If Qu, # K, then Pr,[Qva =
h(a)&h(0) + h(1) = K] < m/p.

Theorem follows (modulo details).
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