Today

o #P C IP.

e Polynomial straightline programs and
interactive proofs.

e Straightline programs for PSPACE.

Madhu Sudan, : 1

#SAT tree & Q-tree

Draw tree of (-values:

Root = value of 3°, g 13n Q(a).

Node = value of sum on suffix, with prefix
set to some fixed value.

Qv = Zce{o,l}? Q(b,c).
Verifier verifies Qn, = Qvo + Qb1-
Now need to to verify Qpo and Qp1.

Can't afford to do this!

Madhu Sudan, : 3

Arithmetizing SAT

Literal polynomials: z — z, T — (1 — z).

Clause polynomial: C(z,y,z) converted to
P(z,y,2); zVyVz — 1—(1—z)(1-y)(1—=2).

SAT polynomial: d(x1,y...,2) —
Q(z1,...,z,) where Q(x) = [[io; Pi(x) if

Property Q(z1,...,z,): for a € {0,1}",
Q(a) =1 if a satisfies ¢ and 0 otherwise.

@ is a polynomial of degree m in each variable.

#o = Zae{o,l}n Q(a).

Madhu Sudan, : 2

#SAT in IP

Will arbitrarily consider @y, for every b € ZZ,
for some prime p.

What meaning does it have? None seemingly,
but @y, is well defined!

Suppose prover claims Q) = #¢ = N. Will
ask prover to prover @y = N(mod p).

Madhu Sudan, : 4

IP protocol for #SAT

Recursively Arthur is verifying: Qp, = K(
mod p).

Consider the function py(z) = 3_cc (0,132 @(b, 2, €)

pp is a univariate polynomial of degree m.
Arthur asks Merlin for py(x).

Merlin responds with h(x).

Arthur verifies h(0) + h(1) = K.

Arthur picks random a € Z, and sends to
Merlin,

Now recursively verify Qpa = h(a).

At end Arthur can compute verify Qp = K,
since Qb = Q(b).

Madhu Sudan, : 5

Abstracting the proof

e Proof uses very little specific to #P.

e More about “downward self-reducibility and
polynomials”.

e Specifically, downward self-reducibility
leads to the tree.

e Algebra compresses questions down to one
question.

e In fact, don’t need any structure on the
questions!

Madhu Sudan, : 7

Soundness

Completeness obvious.
For soundness, will claim:

Claim: If Q» # K, then Pr,[Qva =
h(a)&h(0) + h(1) = K] < m/p.

Proof: CRT to get initialization right over p.
Schwartz Lemma for inductive step.

Theorem follows (modulo details).

Madhu Sudan, : 6

Extending compression: Low-degree
curves

Suppose computing Qp,(x) involves computing
Qc(y) and Qc(z), where y and z are not
related. Can we extend our idea to this case?

Lines in F™: £ :F — ™.
Geometrically - a line is a line.

Algebraically: it is a collection of n functions,
each of which is a degree 1 polynomial.

For any two points y and z, there is a line
¢st. £(0) =y and £(1) = z. Specifically
Lt)=(1—1t)y +tz.

Why are lines nice?

Madhu Sudan, : 8

Qol:IF — IFis a polynomial of (at most)
same degree as ().

Madhu Sudan, : 9

Straightline program of polynomials
Defn: pg,...,pr is an (n,d, L, w)-straight
line program of polynomials if
e Every p; is on at most n variables.

e Every p; is of degree at most d.

e p; is constructed from p;_1 in a simple
form. (Formally, there is a polynomial time
algorithm A that, given 4, x and an oracle
for p;_1 can compute p;(z) making at most
w non-adaptive queries to p;.)

e pg is computable in polynomial time.

Madhu Sudan, : 11

Extending the protocol’s capabilities

e At ith level, to verify Q(x) = a, the verifier
generates y and z and ¢ containing y and
z. Asks prover for Q) o /.

e Prover responds with degree d univariate
polynomial h.

e Verifier verifies consistency assuming h is
right, and then verifies h(«) is correct for
random .

Madhu Sudan, : 10

Polynomial program satisfiability

Defn: Polynomial straight line program
polynomial satisfaction is the language whose
instances are (x,a, (po,...,pr)) such that
pr(x) = a, where x € Z", a € Z
and po, ... ,pr is an (n,d, L, w)-straightline
program of polynomials.

Madhu Sudan, : 12

Polynomial program is in IP for w = 2

Verifier runs in time poly(n,d, L, log ||x]).

e Verifier picks random prime p =
poly(n,d, L,log ||x||) and sends to prover.
Sets ay, <+ a, and X7, < X.

e For i =L — 1 downto 0 do:

— Let y; and z; be queries of A on input
t+1, x;41. Let ¢; be line thru y; and
z;. Verifier asks prover for p; o £;. Prover
responds with h;.

— Verifier verifies that A’s answer on oracle
values h(0) and h(1) is a;41.

— Verifier picks random o € Z, and sets
X; < Ez(a) and a; < hz(Oé)

Madhu Sudan, : 13

Poly program sat. is PSPACE complete

e Basic idea: f;(a,b) has configurations a
and b as inputs (if from {0,1}*), and
fi(a,b) = 1 if get from a to b in exactly
2¢ steps.

e fy is a constant-degree polynomial, of
degree C' in each variable.

® f’H—l(aab) = Zce{o,l}s fi(aac)fi(cab) is
also a polynomial of degree C' in each
variable.

e Unfortunately w # 2.

e Can fix easily: Will do summation slowly.

Madhu Sudan, : 15

e At end verifier verifies ho(a) = po(£o(c)).

Completeness = 1.

Soundness < ¢d/p + CRT.

Madhu Sudan, : 14

PSPACE-completeness

Define longer sequence:
® g; = Gis = fi-
° giO(aa ba C) - gi—l,s(aa C) : gi—l,s(ca b)

* 9ij(a,b,c) = gi j-1(a,b,c0)+gi j-1(a, b, 1),
where ¢ € Z;77.

e g has degree at most C' in the variables of
a, b, and at most 2C' in the variables of c.

i gOagloaglla ---3,91s,920,--- yGss isa sequence
of width w = 2.

e PSPACE completeness follows.

Madhu Sudan, : 16

Conclusion

PSPACE complete problem (Poly. program
sat.) has an IP.

PSPACE C IP.

Can generalize lines argument even
“wider”, for w > 2.

Exercise: Do this, and thus give direct
proof that the permanent has an interactive
proof, where the prover only needs to be
able to compute permanent.

Madhu Sudan, : 17

