Today

e NP C PCP[O(logn), poly logn|.

Madhu Sudan,

e One subscript implies ¢ = 1 suppressed.

e Zero subscripts impliesc =1, s = 1/2.

Madhu Sudan,

Last time

e Defined PCP.
e Verifier is probabilistic. Tosses r(n) coins.

e Verifier interacts with an oracle (i.e., has
random access to a proof string). Makes
g(n) queries.

e Accepts valid proofs with probability >
c(n). (le., if z € L, there exists 7 s.t.

)

e Accepts invalid theorems with probability
< s(n). (le.,ifz ¢ L, forall 7 ...)

e PCP_[r, q] class of such languages L.

Madhu Sudan, : 2

Last time (contd.)

e Mentioned best known result: NP C
PCPL%JFE[O(log n), 3]. [Hastad].

e Consequence: Approximating MAX SAT to
within 15/16+ 4, for any § > 0 is NP-hard.

e Today: A simpler PCP theorem.

Madhu Sudan, : 4

Main ingredients

e NP hardness of an algebraic problem.

e PCP verifier for the algebraic problem.

Madhu Sudan, : 5

PCS

e n associated with m-dimensional space over
some field F. le., n = |F|™.

e Assignment is a function f : " — [F.

e Constraints are arbitrary functions on f,
given by “truth table” or circuit evaluating
them.

e Each constraint will apply to polylogn
variables.

e Only interested in assignments that are low-
degree polynomials.

Madhu Sudan, : 7

Algebraic problem: Polynomial constraint
satisfaction

e Constraint satisfaction problems: Generic
class of problems. xy,...,z, variables.
Cy,...,C; constraints (clauses). Goal:
Find assignment x; — a; that satisfies as
many constraints as possible.

e Typically, no restriction on assignment.

Madhu Sudan, : 6

PCS

e Instance: (m,F,d,w;Cy,...,C;), where
C; given by :cgj),... Lz € F™ and AW
F* — {0,1}, given by arithmetic circuit.

e Yes instances: There exists a degree d
polynomial f : F"™ — [such that all
constraints satisfied.

e No instances: Every degree d polynomial
f : F™ — T, fails to satisfy almost all
(90%) constraints.

Madhu Sudan, : 8

PCS claims

Lemma 1: PCS has a PCP verifier that tosses
O(logt + mlog|F|) coins, queries the proof
O(wdlog |F|) times, and has ¢ = 1 and s = 1.

Lemma 2: SAT on n variables reduces to PCS
in time |F|™, for any F,m,d,w such that
F > 100wd and (d/m)™ > n® and w > d.

Comments: Lemma 2 is just an NP hardness
result?

e Weaker soundness since it only applies to
some assignments.

e Stronger since it gives a gap.

Madhu Sudan, : 9

Missing ingredients in PCP proof

e Hardness of PCS.
e L ow-degree testing

e Self-correction of polynomials.

Madhu Sudan, : 11

Proof of Lemma 1

PCP Verifier:

e Expects proof oracle to be a degree d
polynomial f : F™ — F.

e Step 1: Test function f is close to some
degree d polynomial p. (“Low-degree
testing”).

e Build oracle for p (“Polynomial self-
correction”)

e Pick random constraint C;; and verify if p
satisfies C;.

Madhu Sudan, : 10

Self-correction problem

Given oracle f : "™ — [F s.t. there exists a
polynomial p : F™ — T s.t. Pryemm[f(x) #
p(z)] < 6.

Given also a € F™.

Compute p(a).

Madhu Sudan, : 12

Basic idea: Lines in ™

Pick random r € ™.

Look at line £(t) = (1 —t)a + tr.
ple is degree d polynomial.

We want p|,(0).

£(t) is random point of F™, except if t = 0.
So p(t) = f(€(t)) w.p. 1 —34.

Madhu Sudan, : 13

Analysis

o Pr.[di st. ple(r) # f(€(m:))] < (d+1)d.

e W.p. 1—(d+1)3, h =pl|, and so h(0) =
p(£(0)) = p(a).

Above due to [BeaverFeigenbaum, Lipton].

Madhu Sudan, : 15

Self-correction algorithm

e Pick » € F™ at random.
o Let 74,...,7441 distinct € F.

e Compute h of degree d s.t. h(r;) = f((1—
Ti)a + Tir).

e Output A(0).

Madhu Sudan, : 14

Low-degree testing

How to test if arbitrary function f is close to
some polynomial of degree d?

Run time poly(m,d).
Can't examine whole function.

Can't even write coefficients!

Madhu Sudan, : 16

Idea

If function is close to a polynomial, then its
self-correction equals itself at most points.
Test this.

Algorithm:

e Repeat many times:

— Pick a,r € F™ at random.

— Let 7q,... , 7441 distinct € F.

— Compute h of degree d s.t. h(r) =
f(1=mi)a+ 7).

— Verify h(0) = f(a).

Madhu Sudan, : 17

PCS hardness

e Skip problem statement for now.

e Will play with proof of #P in IP and define
some polynomial straight line programs.

e Will shrinkwrap into hardness of PCS later.

Madhu Sudan, : 19

Analysis

Non-trivial. Beyond scope of interesting
lectures!

Theorem [Rubinfeld-Sudan, ALMSS]: Every
iteration gives min{d/c,vy} probability of
detecting cheating, if f is § far from every
degree d poly.

R-S result v = O(1/d), ¢ = 2.
ALMSS : v >0, but y ~0, c=2.

f-the-art , c =1+ 0(1), v =1 — o(1), where o(1)

depends on d/|F]|.

Madhu Sudan, : 18

Idea

e Arithmetize SAT, and “count” number
of clauses unsatisfied. (Not number of
satisfying assignments).

e For intuition, think of n = 2™ and [n] =

{0,1}™.

e Given SAT formula ¢, think of assignment
as a function A : {0,1}"™ — {0, 1}.

e Extend assignment into function A:Fm™
IF for some appropriate field F.

Prop: Every function A: {0,1}" — {0,1}
can be extended into polynomial A : F™ —
IF of degree one in each variable

Madhu Sudan, : 20

Prop: Every function A : H™ — [F can be
extended into polynomial A : F* — F of
degree |H| — 1 in each variable

Madhu Sudan, : 21

Idea (contd.)

e Arithmetizing satisfiability. Have
arithmetized assignment, and input
formula. Now will arithhmetize satisfying
condition.

o SAT: {0,1}3™+3 T,
SAT(’Ll, 12,13, b1, ba, bg) =
é(i1, 12,13, b1, b2, b3)
- (A(i1) — b1) - (A(i2) — ba) - (A(i3) — b3).

e Input to SAT clause name. SAT(clause) =
0 if clause not in ¢ or clause satisfied.

e We want to “prove” there exists A such
that for every z in {0,1}" s.t. SAT(z) #0
is zero.

Madhu Sudan, : 23

Idea (contd.)

e Think of ¢ : {0,1}3™+3 — {0, 1}.

— Typical clause A(i1) = by or A(iz) = bo
or A(Zg) = b3.

— Specified by i1, 0, i3 € {0, 1}m,b1,b2.b3 €
{0,1}.

- ¢(i1,’i2,i3,b1,b2,b3) = 1 if clause in ¢
and 0 o.w.

e Extend ¢ into ¢.

Madhu Sudan, : 22

Contrast with #P scenario

e m now is logn ...
e Have an existential quantifier on A.

e Wanted to prove a sum condition on
{0,1}™, now we have a “for all" condition

e Previously used sum on integers to convert
“for all” to sum condition and then used
CRT to reduce to finite field question. But
this mizes badly with existential quantifier.

e Will redo proof ... that works.

Madhu Sudan, : 24

Polynomial straightline program

e po = SAT on m/’ variables.

e Will define pq,... ,p, p; defined by simple
rule from p;_1. (l.e. can compute p; with
oracle access to p;_1.)

e Goal: If evolved correctly p,, = 0 in
complete case, and # 0 in unsound case.

o Pi(yl,--- yYis Lit1y- -+ ,ivm')
:pi—l(yla---)Oaxi-}-la"' awm’)
+yipi—l(yla"' a]-axi—i—lr" axm')-

e Claim: p;_1 zero on =1 x {0, 1}~ iff
p; zero on I x {0,1}"°.

Madhu Sudan, : 25

PCS problem instances

e New assignment p : F'+l 5 F polynomial
of degree 2m’ + 1.

e Supposedly p(i,) = pi(x) and p(—1,y, 2) =
Aly). (Assume —1,0,1,...,m’ are
distinct elements of field.)

e Constraints C; ; : pi(x1,... ,Tm)
= pi—l(xla v s L1, 0, e ,xm)
+ zpic1(x1, ..., Ti—1,0,. ..) if 0 €

{1,...,m'}; pi(z) =0if i =m'+1 and
pi(i1,d2,13,b1,b2,03)) = &(...)(p-1(41) —
bl))(p_1<1,3) - bg) if 1 =0.

e Constraint C = N;C} 4.

Madhu Sudan, : 27

PCS problem

e Have many polynomials A, py, ... , Py

e If there exists A such that application of
rules makes p,,» = 0, then ¢ is satisfiable.

e But if it is not zero, some rule 7 is violated,

and then a random (z1, ... , Z,,) will reveal

violation.

Madhu Sudan, : 26
Analysis

Completeness: Following the rules leads to all
cosntraints being satisfied.

Soundness:

e Take polynomial p : F™'+1 — F and let
A :{0,1}™ — T be restriction of p to first
variable = —1 and variables m+1, ... ,m/+
1 being set to 0.

e This assignment fails to satisfy some clause.
So application of rules will lead to p,,,s being
mostly non-zero.

e Prover may cheat on some rule %, but then
C;,» will be violated for most .

Madhu Sudan, : 28

e No matter what C), is mostly unsatisfied.

Madhu Sudan,

29

