Today

• NP \subseteq PCP[$O(\log n)$, poly $\log n$].

Defined PCP.

• Verifier is probabilistic. Tosses r(n) coins.

Last time

 Verifier interacts with an oracle (i.e., has random access to a proof string). Makes q(n) queries.

 Accepts valid proofs with probability > c(n). (I.e., if $x \in L$, there exists π s.t. ...)

 Accepts invalid theorems with probability $\leq s(n)$. (I.e., if $x \notin L$, for all π ...)

• $PCP_{c,s}[r,q]$ class of such languages L.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

• One subscript implies c=1 suppressed.

• Zero subscripts implies c = 1, s = 1/2.

Last time (contd.)

Mentioned best known result: $NP \subset$ $\mathsf{PCP}_{1,\frac{1}{2}+\epsilon}[O(\log n),3]. \ \ [\mathsf{Hastad}].$

 Consequence: Approximating MAX SAT to within $15/16 + \delta$, for any $\delta > 0$ is NP-hard.

• Today: A simpler PCP theorem.

Main ingredients

- NP hardness of an algebraic problem.
- PCP verifier for the algebraic problem.

Algebraic problem: Polynomial constraint satisfaction

- ullet Constraint satisfaction problems: Generic class of problems. x_1,\ldots,x_n variables. C_1,\ldots,C_t constraints (clauses). Goal: Find assignment $x_i\to a_i$ that satisfies as many constraints as possible.
- Typically, no restriction on assignment.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

PCS

- n associated with m-dimensional space over some field \mathbb{F} . I.e., $n=|\mathbb{F}|^m$.
- Assignment is a function $f: \mathbb{F}^m \to \mathbb{F}$.
- ullet Constraints are arbitrary functions on f, given by "truth table" or circuit evaluating them.
- ullet Each constraint will apply to $\operatorname{poly} \log n$ variables.
- Only interested in assignments that are lowdegree polynomials.

PCS

- Instance: $(m, \mathbb{F}, d, w; C_1, \dots, C_t)$, where C_j given by $x_1^{(j)}, \dots, x_w^{(j)} \in \mathbb{F}^m$ and $A^{(j)}: \mathbb{F}^w \to \{0, 1\}$, given by arithmetic circuit.
- Yes instances: There exists a degree d polynomial $f:\mathbb{F}^m\to\mathbb{F}$ such that all constraints satisfied.
- No instances: Every degree d polynomial $f: \mathbb{F}^m \to \mathbb{F}$, fails to satisfy almost all (90%) constraints.

PCS claims

Lemma 1: PCS has a PCP verifier that tosses $O(\log t + m \log |\mathbb{F}|)$ coins, queries the proof $O(wd \log |\mathbb{F}|)$ times, and has c=1 and $s=\frac{1}{2}$.

Lemma 2: SAT on n variables reduces to PCS in time $|\mathbb{F}|^m$, for any \mathbb{F}, m, d, w such that $\mathbb{F} \geq 100wd$ and $(d/m)^m \geq n^c$ and $w \geq d$.

Comments: Lemma 2 is just an NP hardness result?

- Weaker soundness since it only applies to some assignments.
- Stronger since it gives a gap.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

9

Proof of Lemma 1

PCP Verifier:

- Expects proof oracle to be a degree d polynomial $f: \mathbb{F}^m \to \mathbb{F}$.
- Step 1: Test function f is close to some degree d polynomial p. ("Low-degree testing").
- ullet Build oracle for p ("Polynomial self-correction")
- Pick random constraint C_j and verify if p satisfies C_j .

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Missing ingredients in PCP proof

- Hardness of PCS.
- Low-degree testing
- Self-correction of polynomials.

Self-correction problem

Given oracle $f:\mathbb{F}^m \to \mathbb{F}$ s.t. there exists a polynomial $p:\mathbb{F}^m \to \mathbb{F}$ s.t. $\Pr_{x\in\mathbb{F}^m}[f(x) \neq p(x)] \leq \delta$.

Given also $a \in \mathbb{F}^m$.

Compute p(a).

Basic idea: Lines in \mathbb{F}^m

Pick random $r \in \mathbb{F}^m$.

Look at line $\ell(t) = (1-t)a + tr$.

 $p|_{\ell}$ is degree d polynomial.

We want $p|_{\ell}(0)$.

 $\ell(t)$ is random point of $\mathbb{F}^m,$ except if t=0. So $p_\ell(t)=f(\ell(t))$ w.p. $1-\delta.$

Self-correction algorithm

- Pick $r \in \mathbb{F}^m$ at random.
- Let $\tau_1, \ldots, \tau_{d+1}$ distinct $\in \mathbb{F}$.
- Compute h of degree d s.t. $h(\tau_i) = f((1 \tau_i)a + \tau_i r)$.
- Output h(0).

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

1:

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Analysis

- $\Pr_r[\exists i \text{ s.t. } p|_{\ell}(\tau_i) \neq f(\ell(\tau_i))] \leq (d+1)\delta.$
- W.p. $1-(d+1)\delta$, $h=p|_{\ell}$ and so $h(0)=p(\ell(0))=p(a)$.

Above due to [BeaverFeigenbaum, Lipton].

Low-degree testing

How to test if arbitrary function f is close to some polynomial of degree d?

Run time poly(m, d).

Can't examine whole function.

Can't even write coefficients!

Idea Analysis

If function is close to a polynomial, then its self-correction equals itself at most points. Test this.

Algorithm:

- Repeat many times:
 - Pick $a, r \in \mathbb{F}^m$ at random.
 - Let $\tau_1, \ldots, \tau_{d+1}$ distinct $\in \mathbb{F}$.
 - Compute h of degree d s.t. $h(\tau_i) = f((1 \tau_i)a + \tau_i r)$.
 - Verify h(0) = f(a).

Non-trivial. Beyond scope of interesting lectures!

Theorem [Rubinfeld-Sudan, ALMSS]: Every iteration gives $\min\{\delta/c,\gamma\}$ probability of detecting cheating, if f is δ far from every degree d poly.

R-S result
$$\gamma = \Theta(1/d)$$
, $c = 2$.

ALMSS :
$$\gamma>0$$
 , but $\gamma\sim0$, $c=2.$

f-the-art ,
$$c=1+o(1)$$
, $\gamma=1-o(1)$, where $o(1)$ depends on $d/|\mathbb{F}|$.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

1

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

PCS hardness

- Skip problem statement for now.
- Will play with proof of #P in IP and define some polynomial straight line programs.
- Will shrinkwrap into hardness of PCS later.

Idea

- Arithmetize SAT, and "count" number of clauses unsatisfied. (Not number of satisfying assignments).
- For intuition, think of $n=2^m$ and $[n]=\{0,1\}^m$.
- Given SAT formula ϕ , think of assignment as a function $A: \{0,1\}^m \to \{0,1\}$.
- Extend assignment into function $\hat{A}: \mathbb{F}^m \to \mathbb{F}$ for some appropriate field \mathbb{F} .

Prop: Every function $A:\{0,1\}^m \to \{0,1\}$ can be extended into polynomial $\hat{A}:\mathbb{F}^m \to \mathbb{F}$ of degree one in each variable

Prop: Every function $A:H^m\to\mathbb{F}$ can be extended into polynomial $\hat{A}:\mathbb{F}^m\to\mathbb{F}$ of degree |H|-1 in each variable

Idea (contd.)

- Think of $\phi: \{0,1\}^{3m+3} \to \{0,1\}.$
 - Typical clause $A(i_1)=b_1$ or $A(i_2)=b_2$ or $A(i_3)=b_3$.
 - Specified by $i_1, i_2, i_3 \in \{0, 1\}^m, b_1, b_2.b_3 \in \{0, 1\}.$
 - $-\phi(i_1,i_2,i_3,b_1,b_2,b_3)=1$ if clause in ϕ and 0 o.w.
- Extend ϕ into $\hat{\phi}$.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

0.0

Idea (contd.)

- Arithmetizing satisfiability. Have arithmetized assignment, and input formula. Now will arithmetize satisfying condition.
- SAT : $\{0,1\}^{3m+3} \to \mathbb{F}$, SAT $(i_1, i_2, i_3, b_1, b_2, b_3) = \phi(i_1, i_2, i_3, b_1, b_2, b_3) + (A(i_1) - b_1) \cdot (A(i_2) - b_2) \cdot (A(i_3) - b_3)$.
- Input to SAT clause name. SAT(clause) = 0 if clause not in ϕ or clause satisfied.
- We want to "prove" there exists A such that for every x in $\{0,1\}^m$ s.t. $\mathrm{SAT}(x) \neq 0$ is zero.

Contrast with #P scenario

- m now is $\log n$...
- ullet Have an existential quantifier on A.
- Wanted to prove a sum condition on $\{0,1\}^m$, now we have a "for all" condition
- Previously used sum on integers to convert "for all" to sum condition and then used CRT to reduce to finite field question. But this mizes badly with existential quantifier.
- Will redo proof ... that works.

Polynomial straightline program

- $p_0 = SAT$ on m' variables.
- Will define $p_1, \ldots, p_{m'}$ p_i defined by simple rule from p_{i-1} . (I.e. can compute p_i with oracle access to p_{i-1} .)
- Goal: If evolved correctly $p_{m'} \equiv 0$ in complete case, and $\not\equiv 0$ in unsound case.
- $p_i(y_1, \dots, y_i, x_{i+1}, \dots, x_{m'})$ = $p_{i-1}(y_1, \dots, 0, x_{i+1}, \dots, x_{m'})$ + $y_i p_{i-1}(y_1, \dots, 1, x_{i+1}, \dots, x_{m'}).$
- Claim: p_{i-1} zero on $\mathbb{F}^{i-1} \times \{0,1\}^{n-i+1}$ iff p_i zero on $\mathbb{F}^i \times \{0,1\}^{n-i}$.

PCS problem

- Have many polynomials $\hat{A}, p_0, \ldots, p_{m'+1}$.
- If there exists \hat{A} such that application of rules makes $p_{m'}=0$, then ϕ is satisfiable.
- But if it is not zero, some rule i is violated, and then a random $(x_1, \ldots, x_{m'})$ will reveal violation.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

PCS problem instances

- New assignment $p: \mathbb{F}^{m'+1} \to \mathbb{F}$ polynomial of degree 2m'+1.
- Supposedly $p(i,x) = p_i(x)$ and $p(-1,y,z) = \hat{A}(y)$. (Assume $-1,0,1,\ldots,m'$ are distinct elements of field.)
- $\begin{array}{l} \bullet \ \mbox{Constraints} \ C_{i,x}: p_i(x_1,\ldots,x_m) \\ = p_{i-1}(x_1,\ldots,x_{i-1},0,\ldots,x_m) \\ + \ x_i p_{i-1}(x_1,\ldots,x_{i-1},0,\ldots,x_m) \ \ \mbox{if} \ \ i \in \\ \{1,\ldots,m'\}; \ p_i(x) = 0 \ \mbox{if} \ \ i = m'+1 \ \mbox{and} \\ p_i(i_1,i_2,i_3,b_1,b_2,b_3)) \ = \ \phi(\ldots)(p_{-1}(i_1) b_1) \ldots (p_{-1}(i_3) b_3) \ \mbox{if} \ \ i = 0. \end{array}$
- Constraint $C_x = \wedge_i C_{i,x}$.

Analysis

Completeness: Following the rules leads to all cosntraints being satisfied.

Soundness:

- Take polynomial $p: \mathbb{F}^{m'+1} \to \mathbb{F}$ and let $A: \{0,1\}^m \to \mathbb{F}$ be restriction of p to first variable =-1 and variables $m+1,\ldots,m'+1$ being set to 0.
- This assignment fails to satisfy some clause. So application of rules will lead to p_{m^\prime} being mostly non-zero.
- Prover may cheat on some rule i, but then $C_{i,x}$ will be violated for most x.

•	No	ma	itter	what	C_x	is	mostly	unsatis	fied.
©М	ladhu \$	Sudan,	Spring 2	2002: Advar	iced Coi	mplex	ity Theory: MI	T 6.841/18.405	J