6.841/18.405J: Advanced Complexity Wednesday, Feburary 19th, 2003
Lecture 5
Instructor: Madhu Sudan Scribe: Steven Stern

Problem Set 2 available today. Due in 2 weeks, on March 5th.
1. Polynomial Hierarchy

2. PH does not collapse?

3. Circuit Complexity

4. Karp-Lipton Theorem

1 Polynomial Hierarchy

Definitions

¥F =Languages accepted by polynomial time bounded ATM starting in existential state with i
alternating quantifiers.
P =Languages accepted by polynomial time bounded AT M starting in universal state with i
alternating quantifiers.
PH=]x}
i>0

¥FP = NP, I = coNP and by convention, 3F = TI¥' = P. MINDNF € £¥ (this was also shown
to be complete for the class by Umans[U98]).

Since we can always add “null” quantifiers, we know that £, C IIf C ©f,. We can also
define this class as II¥ = {L|L € £¥}. Since NP allows for one existential state, we can say that

SR NPT
Furthermore, since PH is an infinite union, we can also define it as PH = |J,5,IIF

Complete Problems
There exists a complete problem for each of these classes, defined as follows:
ZETQBF = {¢|3$1V$23$3...Qi$i¢($1,.'23'2, ,.Z',)}

ZVTQBF = {¢|Vm15|x2Vm3...Q,~$,-¢(x1,332, ,.Z',)}

where ¢ is a 3CNF formula, and z1, 2, ..., z; are blocks of variables. i3TQBF is ©F complete, and
iVT @dddplstE for polynomial time reductions (Vi > 1)
2 PH does not collapse?

We believe (but haven’t proven) that ~F # ITF, Vi > 1.

7

PSPACE

Theorem 1 If X =17, Vj > i, 2 =17 = %7, and thus, PH = %]

A

Proof: By induction on j. True (by assumption) for j = 4. Let j > ¢ and assume true for j — 1.
We know that Ef contains every TM M, where M makes j alternating steps. We can rewrite
this as:

L = {z|3y s. t. N(z,y) accepts, where N makes j — 1 alternating steps starting in a V state}

But, since Eﬁ 1= Hfﬁl, there must exist N'(z,y) which accepts the same language as N, but makes

j — 1 alternations and starts in an 3 state.
L(N'") ={(z,y)|32 s. t. N"(z,y,z2) accepts, N"" makes j — 2 alternations and starts in a V state}

L = {z|3y, z such that N"(z,y, z) accepts}
Lexy,

3 Circuit Complexity / Non-Uniform Computation

Circuit Complexity

How small a circuit can we build to decide SAT?

We define circuits which take boolean inputs, of size n, and produce a boolean output, of size
m. That is, {0,1}" = {0,1}™. A circuit is represented by a DAG (Directed Acyclic Graph), with
the following properties:

1. n “input” vertices (have in-degree=0), labelled z1, s, ..., .

2. Many intermediate nodes (gates), of in-degree=1 (the NOT function) or in-degree=2 (the
AND, OR functions). If these have out-degree= 1, it is called a formula. If out-degree> 1, it
is a circuit.

3. m designated outputs.

4. Size is defined as the number of gates.

However, the circuit of interest to us is one that decides SAT. That is, let |¢| = n, and
SAT, :{0,1}" = {0,1}, can we design a small hardware circuit to solve this problem?
We define the complexity class corresponding to circuits as follows:

SIZE(s(n)) ={L| There exists an infinite family of circuits Cy,Cs,...,Chy,... such that
|Ci| < s(@),Viandx € L <= (|, =1}

In other words, SIZE(s(n)) is the set of all languages that can be decided by a family of circuits of
size s(n).

Non-Uniform Complexity

Can a little “advice” help solve hard problems?

For certain problems, this advice certainly can help. The problem of deciding if a 7'M halts on
the input 0™ can be decided with non-uniformity. However, it is believed that no “nice” problems,
such as SAT, can be solved more efficiently with non-uniformity.

We define a TM that uses non-uniformity as: M (e,), where the first argument passed is the
“advice”, represented as a string, and the second argument is the input. There is a different “advice”
string for each input size.

Using a Circuit as the “Advice”

The interesting problem to examine is determining if there exist advice strings, a(1),a(2), ..., a(n),
such that M(a(n),$) = 1 iff ¢ € SAT. The running time of M must be polynomial time, and the
size of a(n) must be polynomial in n, for this problem to be interesting. If either were allowed to be
exponential, then the problem becomes trivial.

Definition: L € P/poly if there exists a polynomial time bounded Turning Machine, M, polynomial
D, and advice strings ai,as, ..., an, ... with |a,| < p(n) such that for every z € {0,1}", z € L &
M(:L',a‘“) =1.

Note that P/poly is exactly the class of languages that are computable by a family of circuits
of polynomial size. This equivalence is noted by observing the following facts. (i) The circuit can
serve as the advice for each n. (ii) The advice for each n can be hardwired into the corresponding
circuit. In other words, P/poly = Ug>oSIZE(n?).

4 Karp-Lipton Theorem

Clearly, if P = NP, the SAT has polynomial sized cicuits, we’ll show a weak converse, namely that
if SAT has polynomial sized circuits, then the polynomial hierarchy collapses.

Theorem 2 NP ¢ P/poly = NP # P, and NP C P/poly = PH collapses to some finite level.
That is, PH = EkP for some finite k.
First for some definition,

M-GOOD = {a,|if M(a,,e) decides SAT on n-length inputs}
The following two lemmata prove the above theorem.

Lemma 1 Deciding if a, € M-GOOD is in TI¥ for some i

Lemma 2 if NP C P/poly and M-GOOD € 1Y for some i, then £, = T8,

Proof of Lemma 1: Observe that
an, € M-GOOD <= V¢, (M(aw,q&) =1 <= da,¢(a) = 1).

Equivalently,
a, € M-GOOD < V¢, [((M(ad,,qﬁ) =1)A (e, ¢(a) = 1)) \Y; ((M(a|¢|,¢) =0)A(Vp, d(p) = 0))]

Or equivalently,

an € M-GOOD <= V¢, pIa [((M(a|¢|,¢) =1 A (g(a) = 1) V ((M(ajg,) = 0) A (d(p) = 0))]

and the above computation can be done in IT¥

mplicity, that ¢ is odd. By definition, (i+2)3TQBF = {¢|3z1Vzs...3xi120(x1, 22, ..., Tig2) }-
ve can examine Y (i) = ¢(x1, T2, ..., Tiz2). We will also use a M-GOOD

ine if M (¢,an+1) = 1. We are going to guess an M-GOOD string, and

> formally:

for ¢:

c M-GOOD
Jx3..Vr, 11 M (¢, a,) =1, where ¢(o) = ¢(z1, 22, ..., Tit2)

inimum Equivalant DNF Problem and Shortest Implicants. In Proceedings
IEEE Symposium on Foundations of Computer Science (FOCS). pages

