6.841/18.405J: Advanced Complexity Monday, February 24, 2003
Lecture 5

Instructor: Madhu Sudan Scribe: Daniel Zaharopol

1 Fortnow’s time/space lower bound for SAT

Fortnow gave a lower bound for either time or space for an algorithm to solve SAT, though the
proof doesn’t say which actually has the bound [F00].

To be more specific, consider what we “believe” about complexity classes. We believe PH does
not collapse, which in turn would imply that NP # P. This, in turn, would imply both that SAT
does not have a linear-time algorithm, and that it does not have a log space algorithm.

We will prove that, given two TMs, one cannot solve SAT in linear time while the other solves
it in logarithmic space. This result is not trivial; it was open until 1997, when proven by Fortnow.
The main idea of the proof, surprisingly, is to use alternation to derive a contradiction.

Let’s state the theorem more formally.

Theorem 1. SAT € L = Je > 0 such that SAT ¢ TIME(n!*¢)

We prove this, as usual, by contradiction: assume SAT € L and SAT € TIME(n!*¢).

Intuitively, we can see where the contradiction comes from by looking at the “power” of alter-
nation given either alternative. Suppose SAT € DTIME(n!*¢). This would imply, in a way, that
alternation was not powerful. For example, it would give us that Ef C PVi.

On the other hand, Savitch’s theorem tells us that alternation is powerful for small space com-
putation. But since SAT € L, this would tell us that alternation was powerful.

In principle, this is a contradiction. We now quantify it.

The contradiction will come from the Time Hierarchy Theorem (we could also derive it, with some
more work, from the Space Hierarchy Theorem). Essentially, we will derive that TIME(T'(n)) C
TIME(T'?), for some § > 0. We will do this by finding some intermediary inclusions.

1.1 Cook’s Strong Theorem

There is a stronger version of Cook’s Theorem which says that languages in NTIME(T'(n)) reduce
to SAT on formulae of length T'(n)logT'(n). We don’t know that this bound is tight (after all, if
P = NP, then they reduce to formulae of length 1).

Theorem 2 (Cook’s Strong Theorem|[C88]). let M be a nondeterministic Turing machine run-
ning in time t(n). There is a reduction running in O(t(n)logt(n)) time and O(logt(n)) space that
maps inputs © of length n to formulae ¢ of size O(t(n)logt(n)) such that

re€Ll < ¢e SAT.

We can, of course, also apply this result to deterministic time to get that TIME(T (n)) C SAT
on length T'logT. Then, given our assumption about SAT, TIME(T(n)) C SPACE(O(logT)). This
is our first inclusion to derive our contradiction.

Lemma 1. SPACE(s) C ATIME[2i, s2%]

Proof. We prove this in a similar manner to Savitch’s theorem.
Consider the computation of a SPACE(s) TM; we can write the states of its tape(s) in a table
with width s(n) and height 2°.

In the proof of Savitch’s Theorem, we continually divided the computation in half, and examined
each half to see if it was a valid computation.

In this proof, we divide each time into w pieces and guess the w intermediate points. Each time
we divide out, we perform two alternations.

Each time we branch out, we guess the next computation universally. This requires writing down
each computation (of length s), and doing this 4 times if we perform 2¢ alternations in total. Then
the total time taken is wsi.

Let w = 27, so that we continue to split the table into w pieces each time we go down a level.

Then the total time taken is wsi = s274, with 2i alternations.

This gets us another inclusion, so we’ve built up to TIME(T'(n)) C SPACE(c; logT) C X
for constants ¢; and cs.

TIME(T(¢2/%))
2%)

1.2 The Final Step
Lemma 2. (3T QBF € TIME(n(H'G)s")

Proof. We proceed by induction.

Consider 23TQBF. A problem is of the form 3z1 ...2,Vy1 ... Ym (@1, ..., Ty Y1, - -, Ym). But
VY1 ... Ym@ is in co — NTIME(n) and therefore in TIME(n!*¢).

Then our entire formula is in NTIME(n!*¢); from Cook’s Strong Theorem we know that this
reduces to a satisfiability problem in SAT of length n!*¢logn, which is in TIME((n'*¢logn)*¢).
This is clearly in TIME(n(1+9%).

We now proceed by induction, using the same argument, and get that i:3TQBF € TIME(n(H'f)m).

This gives us that Si VP T") € TIMB((T(e2/)) 14+,

Then TIME(T(¢2/9(1+9%) 5 TIME(T) by our chain of inclusions.

This is a contradiction for proper choices of i and ¢; for example, if we choose ¢ = 10¢cy and
€ =1/(60cz).

Then we conclude that initial theorem about SAT was correct.

2 Randomness

Here we consider randomness as a resource, and look at the eight complexity classes of interest when
considering randomness.

2.1 Augmented Turing Machines

We’ve already seen various “augmented Turing machines,” of the form M (-,-). The idea is that each
one takes a “real input” — a string we wish to accept or reject — and an “auxilliary input,” a string
that somehow helps the calculation. We generally assume M (z,y) operates in polynomial time, and
that y is polynomial in the length of z.

For example, nondeterminism asks if, given x, there exists y such that M(z,y) accepts.

Non-uniformity says that, for all n, there exists y, such that, for all z with |z| = n, « € L if and
only if M(x,y) accepts.

When considering randomness, y is not related to x at all, but captures some physical process.
We ask if randomness can make computations faster.

2.2 Randomness

We’d like a machine M for a language L to accept x with a high probability if € L, for the range
of auxilliary inputs y.

There are several kinds of errors we can accept. A “false positive” occurs when z ¢ L but M
accepts on some y. A “false negative” occurs when x € L but is rejected on some y.

We can require either that there are no false positives, no false negatives, none of either, or we
can accept either. This gives us four natural complexity classes.

We get the other four by considering machines that operate either in polynomial time or loga-
rithmic space.

For logarithmic machines, we stipulate that they can read y only once (they must store what
information they need in their own memory).

2.3 Complexity Classes

In all of the following, the final “P” stands for “polynomial.”

e 7ZPP — zero-error probabilistic
¢ RP — Randomized
e coORP — Complement-randomized

e BPP — Bounded-error probabilistic

We say that L € ZPP if there exists a TM M such that Pry[Macceptsz] = 1 if z € L,
Pry[Macceptsz] = 0 if ¢ L. This seems to give no benefit from being probabilistic, so we al-
low one more output for this class only: “I don’t know.”

RP is in a sense analogous to NP. With NP, we know that = € L if there exists a y such that
M (x,y) accepts. A languageis in RP, meanwhile, if there exists a TM M such that Pr,[Macceptsz] >
Lif x € L, and Pry[Macceptsz] = 0 if = ¢ L.

coRP is just the complementary class, defined as the complement of languages in RP. It’s easy
to see that this is equivalent to there existing M such that Pry[Macceptsz] = 1 if z € L, and
Pry[Macceptsz] < } if z ¢ L.

As an exercise, one can prove ZPP = RP = coRP.

There more interesting class for study is BPP. Here, we say that L € BPP if there exists a TM
M such that Pry[Macceptsz] > 2 if z € L, and Pry[Macceptsz] < % if ¢ L. It turns out that
these bounds can be anything as long as they differ appreciably; for example, we could even have
2+ ‘i—‘ and % as our bounds.

References

[C88] S. Cook. Short propositional formulae represent non-deterministic computation. Information
Processing Letters, 26:269-270, 1988.

[F00] L. Fortnow. Time-space tradeoffs for satisfiability. Journal of Computer and System Sciences,
60(2):337-353, April 2000.

