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1 BPPCPH

A review of the currently known relationships among relevant complexity classes appears in Figure 1.
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Figure 1: The currently known relationships among complexity classes.

The purpose of this part of the lecture is to demonstrate that BPP C PH, in particular that
BPP C YF. Before proceeding with the proof, we will get an idea of what we are trying to do.
For an arbitrary language L € BPP, we are trying to show that a string w is in L exactly when
Az, Ty, - Y P(T1, - X0, Y1,- -+ ,Yn) = 1 for some polynomial time computation P. In
other words, the “x player” is capable of finding a sequence of xs such that for any sequence of ys
that the “y player” chooses, the polynomial time “audience” will accept.

Suppose M is a BPP machine for L. The above characterization of membership in X% raises
three questions that the proof of BPP C XY must answer in constructing such a “debate system”
using M:

1. What should the x player do?
2. What should the y player do?
3. What should P be?

Using M, on input w (with |w| = n) consider all possible random strings z (with |z| = m = poly(n))
that could be used. Define a “bad string” to be a string z that causes M to make the wrong decision
about whether w € L (e.g. M(w,z) = 0but w € L). Note that because M is a BPP machine for L, it



is the case that if w € L then Pr[M(w,2) =1] > 1—-2"", and if w ¢ L then Pr[M(w,z) = 1] < 27",
Thus, there are very few bad random strings z on a particular input w.

Let us consider partitioning the universe of all possible random strings of length m into two halves.
One half contains only good strings and one half contains all of the bad strings (See Figure 2). If
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Figure 2: A schematic of a partition of the universe of random strings of length m.

the random string z falls in the good partition then M gives the correct answer, while if z falls in
the bad partition there is a small probability of error. Thus, if an efficiently computable bijection
m:{0,1}™ — {0,1}™ is created between the two halves, then the results of both M(w,z2) and
M (w,m(z)) can be examined with assurance that one of them is correct and one may be incorrect
with low probability. Thus, if w € L then M(w,2) =1 or M(w,nw(z)) = 1.

Note that the x player can announce this bijection 7 in its round, and the y player can check
whether 7 is, in fact, a bijection by testing all possible inputs to the bijection and exhibiting a pair
that map to the same value to the audience if x tried to cheat by announcing a function that was
not a bijection.

One problem with this is that it is not clear that such an efficiently computable bijection exists.
One candidate bijection is the family of bijections

TpiZ2—> 20T,

where r € {0,1}™. It is clear that 7, is a bijection and is efficiently computable; however it is not clear
that it creates a good partition. Nevertheless, on average we expect that using m,. for a particular
random r will cause Pr[M (w, 2) V M (w,7,(2)) = 0] to be much smaller than Pr[M (w, z) = 0] given
that w € L because the probability that both z and 7,.(z) are bad is less than 27" - 27" where n is
the length of w.

Clearly, this represents an improvement so let us strengthen the improvement by choosing
r1,...,r; at random and fixing z to some random value. Continuing the argument from above,
we have

Pr[M (w, 7, (2)) V -V M(w,mp,(2)) = 0] < (27,

which is less than 2™ for some [ < m. Note that this probability is so small that it is less than
the probability of choosing a particular m bit string at random. Also, note that if w ¢ L then the
probability of making an error has increased, but only linearly in | because

Pr[M (1, (2)) V -V M(w,mp, (2)) = 1] < 1-277,
Now, to answer the three questions from above, consider what happens if

1. The x player uses the strings r1,... ,7.



2. The y player uses all values of z.
3. The audience uses M (w,w,, (2))V ---V M(w, 7, (2)).

That is, we consider the formula
Ire,...,mVeM(w, mp, (2)) V-~ -V M(w, 7, (2)). 1)

To see that Equation 1 proves that L € XY, note that M (w,m,,(z)) is a polynomial time com-
putation and it is repeated [ times, which is also polynomial in n. Also, note that it is correct
because:

e If w € L, then the probability that for random rq,... ;7 M(w, 7 (2)) V-V M (w, 7, (2))
gives the wrong answer is so small that less than one potential z (member of {0,1}™) causes
an error on average. Thus, there must be some choice of rq,... ,r; such that no error occurs
for any z. That is,

we€L = Jr,...,VaM(w,7,(2)) V-V Mw,r, (2)) =1.

o If w ¢ L, then for random r1,...,7 Pr[M(w, 7, (2)) V-V M(w, 7, (2)) = 1] <1-27™ as
shown above. Thus, for any setting of r1,... ,r; there is some 2 (in fact, there are many) such
that M (w, 7 (2)) V-V M(w, 7, (2)) = 0. In other words,

w¢ L = Vry,..., i zM(w, 7, (2)) V-V M(w,m, (2)) = 0.
This is just another way of stating

w¢ L = —3Ir,...,rVz2Mw,mp (2) V- VM@w,n, (2) = 1.

2 Circuit Lower Bounds

To motivate the discussion of circuit lower bounds, consider the question of whether it is possible
to get rid of the randomness in randomized algorithms and still have them recognize the same
languages. Randomness can be simulated by constructing or computing strings that look random
to polynomial time machines or, say, time n? machines. An important component of this progress
involves proving circuit lower bounds.

Recall that a circuit is a directed acyclic graph with:

e 1 input nodes, which have in-degree 0, arbitrary out-degree, and are labeled z1,... ,z,
e 1 output node, which has arbitrary in-degree and out-degree 0
e many internal nodes, which have 3 types of functions:

1. NOT, which has in-degree 1 and arbitrary out-degree
2. OR, which has arbitrary in-degree and arbitrary out-degree
3. AND, which has arbitrary in-degree and arbitrary out-degree

For our purposes, there are two important measures of circuits:
1. The SIZE of a circuit is the number of edges in its graph.
2. The DEPTH of a circuit is the length of the longest path in its graph.



One universal bound on circuit size is that for all functions f : {0,1}" — {0, 1}, there is a circuit
of size n2" that computes f. To see that this is true, consider the circuit that has the entire table
of values for f encoded as a sum of products (DNF).

Proposition 2-1. There ezists a function f that cannot be computed by a circuit of size 2™ [n.

The typical function for which lower bounds are proven is f(h,z) = h(x), which splits the input
into a function h and an input z for h. In this way, diagonalization can be used to prove that there
is some {f,}, computable in PSPACE that requires a size nlogn circuit.

Q(1/d)

If C is a circuit of size s and depth d that computes z1 ® - - - ® z,, (i.e. parity) then s > 2"



