
6.841/18.405J: Advanced Complexity Wednesday, April 2, 2003

Lecture Lecture 14
Instructor: Madhu Sudan Scribe: Dion Harmon

In this lecture we cover

• IP = PSPACE

– Interactive proof for straightline programs.
– Straightline program for PSPACE.

• Other definitions of proofs (and nice applications).

– Multi-prover interactive proofs (MIP) and MIP = NEXP.
– Oracle Interactive Proofs.
– Probabilistically Checkable Proofs (PCP’s).

1 IP = PSPACE

We have left to show that PSPACE ⊆ IP. We do this by using straightline programs of polynomials.
We first show there is an interactive proof to evaluate any straightline program of a certain type
and then show that any L ∈ PSPACE has a nice straightline program of the same type.

1.1 Straightline Programs of Polynomials

A straightline program of polynomials is characterized by four parameters: n, L, w, and d.

n The number of variables.

L The number of polynomials (minus 1).

w The width of the program.

d The degree of the program.

The program consists of polynomials P0, . . . , PL each of degree at most d in at most n variables.
Polynomial Pi is easy to evaluate in polynomial time with at most w calls to Pi−1. We will deal
with w = 2 today. We are interested in verifying claims of the form PL(z) = a.

1.2 Lines in Zn
p

Algebraically a line in Znp is a set

`xy = {`xy(t)| t ∈ Zp} =

(1− t)x1 + y1

(1− t)x2 + y2

...
(1− t)xn + yn

∣∣∣∣∣∣∣∣∣ t ∈ Zp

 (1)

where x and y are elements of Znp . The definition of a function p from Znp to Znp restricted to a line
is now straightforward:

p : Znp 7→ Zp
p|` : Zp 7→ Zp such that p|`(t) = p(`(t)).

where `(t) is defined as in equation (1). Note that if a function P has degree d in Znp then the
restriction of P to a line ` has the same degree (in x, y, and t variables).

1

1.3 Interactive Proof for some width 2 straightline programs.

We consider straightline programs of the form

Pi(x) = Pi−1(fi(x)) σi Pi−1(gi(x))

where σi ∈ {+, ·} and fi and gi are polytime computable.
We want to see if PL(zL) = aL. For the first step we do the following:

Round 1: Both V and P compute xL = fL(zL) and yL = gL(zL).

Round 2: P sends V a polynomial hL(t) which is supposed to be PL−1(`xL,yL(t)).

Round 3: V checks to make sure that aL = hL(0) σL hL(1). If not, V rejects. Otherwise V picks
tL randomly in Zp. Let zL−1 = `xL,yL(tL) and aL−1 = hL(tL).

P and V verify recursively that PL−1(zL−1) = aL−1. We end at the question, “Does P0(z0) = a0?”
and the verifier can compute this in poly time.

This is sound and complete:

Completeness The prover is honest and computes hi = Pi|`i at each step and the verifier will not
reject: we accept with probability 1.

Soundness If Pi(zi) 6= ai and the verifier does not reject during step L− i+1 then with probability
1 − d/p Pi−1(zi−1) 6= ai−1 and the inequality is preserved. The inequality is preserved with
probability (1−d/p)L ≥ 1−dL/p through all steps. The verifier checks for itself if P0(z0) = a0.
If PL(zL) 6= aL it will discover P0(z0) 6= a0 with probability ≥ 1− dL/p. Picking p larger than
2dL gives us the necessary bound.

2 Straightline polynomials produce all of PSPACE

2.1 Description of polynomials used

We use only the types of polynomials described at the beginning of section 1.3. Our polynomials
are Pi(x, y) and Qi,j(x, y, z1, . . . , zj), where x and y are length n vectors in Znp and zi ∈ Zp. If the
input vectors x and y are length n bit vectors (0’s and 1’s) then we interpret them as configurations
of some PSPACE machine M . The vectors x and y have no special meaning if they are not bit
vectors. For state vectors x and y let

Pi(x, y) =
{

1 if M goes from x to y in exactly 2i steps
0 otherwise

To get Pi from Pi−1, consider some state z that is halfway between x and y in the execution of
M . We have Pi−1(x, z) = Pi−1(z, y) = 1. Execution of M is deterministic so there is only one such
z (in {0, 1}n). Thus

Pi(x, y) =
∑

z∈{0,1}n
Pi−1(x, z) · Pi−1(z, y).

It takes exponential time to sum over all such z so we use the Qi,j polynomials to evaluate the
sum efficiently:

Qi,n(x, y, z1, . . . , zn︸ ︷︷ ︸
z∈Zn

p

) = Pi−1(x, z) · Pi−1(z, y)

Qi,j(x, y, z1, . . . , zj) = Qi,j+1(x, y, z1, . . . , zj , 0) +Qi,j+1(x, y, z1, . . . , zj , 1)

2

Thus
Qi,0 =

∑
z∈{0,1}n

Pi−1(x, z) · Pi−1(z, y) = Pi(x, y).

Our polynomials (in order) for the straightline program are

P0, Q1,n, . . . , Q1,0, P1, Q2,n, . . . , Q2,0, P2, . . . , PL.

Our program has width 2 and length n2. The degree of this straightline program is discussed
below.

2.2 Degree of P0

We can give P0 explicitly in terms of single step of the machine:

P0(x, y) =
n∏
j=1

 xi−1 xi xi+1

yi

where n is the total amount of space used in the computation. The polynomial represented by

xi−1 xi xi+1

yi

is one if yi is the appropriate bit given the x bits and 0 otherwise. It is of some constant degree at
most D in xi’s and yi’s. The degree of P0(x, y) in any one x variable is at most 3D and D in any y
variable. Thus P0(x, y) is of degree at most 3nD which is polynomial in the input size.

2.3 Degree of other polynomials

Assume Pi−1 is of degree at most d in any one variable (the total degree may be nd). The expression
for Qi,n indicates it can be degree at most d in any x or y variables and 2d in any z. The sums to
get Qi,j ’s for j < n eliminate one z variable at each step but do nothing to the degree in x and y
variables. Thus all Pi’s are of degree at most that of P0 and all Qi,j ’s are at most twice this.

3 Comments on PSPACE

• This reduction shows that all PSPACE problems are self-reducible. This is not true for higher
complexity classes.

• Papadimitriu1 interpreted PSPACE as the complexity of games. For example GO is PSPACE-
complete. One player is the existential quantifier and the other is the universal quantifier:
“There is some move player one can make so that for every move player two makes, . . .”

IP is the class of solitare games. The verifier is kind stupid. It generats random numbers and
makes sure the rules are followed. The prover is the player and tries to convince the verifier
that it can win.

1Papadimitriou, C. H. “Games against nature [PSPACE, new characterization]” J. Comp. and Sys. Sci. Oct.
1985; 31(2): 288–301.

3

The result that IP = PSPACE shows that for almost any two player game (we don’t quite
know about Chess for example) there exists a solitare game which is just as “intellectually
stimulating” (complex). The solitare game Mah-Jongg was shown to be PSPACE-hard2.

4 Other Models of Proofs

4.1 Multiple Interactive Proofs: MIP

Use more than one prover. Provers do not have knowledge of the discussions between the verifier
and the other provers, but they may collaborate before interactions begin (even based on the input).
Clearly IP ⊆MIP: we ignore the other provers. The other direction is not so clear.

It was known for a long time that MIP ⊆ NEXP. For the inclusion NEXP ⊆ MIP, the
basic idea is that NEXP-complete problems may be phrased as: “Does there exist a P0 such that
PL(z) = a in a straightline program of polynomials?” With multiple provers, we go through the
usual interaction to get a question of the form: “Does P0(z0) = a0?” Then we ask this of the second
prover.

4.2 Oracle Interactive Proof

In this case, the prover is an oracle with no memory of past interactions. It was shown that
MIP ⊆ OIP ⊆ 2IP. The power of having many provers may be simulated by having only two.

4.3 Probabilistically Checkable Proofs (PCP’s)

4.3.1 Definintion of PCP[r, q]

We use an oracle to examine some string y that could be a certificate for the statement x ∈ L. We
can only check a certain number of bits of the certificate y and only flip a certain number of coins.
L ∈ PCP[r, q] if there exists a verifier v of x ∈ L such that

• v tosses at most r(|x|) coins

• v queries the certificate oracle in at most q(n) bits

• v runs in polynomial time and accepts with probability

– 1 if x ∈ L
– ≤ 1/2 if x 6∈ L

4.3.2 Examples

Let |x| = n.

• PCP[0,poly(n)] = NP

• PCP[poly(n), 0] = co-RP

• PCP[poly(n),poly(n)] = NEXP (non-trivial to prove)3

2Condon, A.; Feigenbaum, J.; Lund, C.; Shor, P. “Random Debaters and the Hardness of approximating stochastic
functions” SIAM Journal on Computing. April 1997; 26(2): 369–400.

3Babai, L.; Fortnow, L.; Lund, C. “Non-determinstic exponential time has two-prover interactive protocols.”
Computational Complexity. 1991; 1(1): 3–40.

4

• PCP[O(log(n)), O(1)] = NP4

• PCP[O(log(n)), 3] = NP This is hard to show5.

4.3.3 Begin discussion of a PCP[O(log(n)), 3] verifier for NP.

We can make a table of random bits and questions we want to ask about the proof y when the
corresponding random bits come up.

Bits Rule
000 · · · 00 y1 = 1⇒ y2 = y20

000 · · · 01 y1 = 0⇒ y32 ∨ ȳ100

111 · · · 11 if y2 = 1 then y3 = y4 else y10 = y1

Each question may be written as an eight clause CNF formula in at most seven variables (we can
only check three for any particular evaluation). We can arrange it so that seven of the eight clauses
are satisfied for any assignment of the variables. Combine the CNF clauses from all the rules into
one forumal with 8M clauses. By definition of a PCP, at least half the tests will not be satisfied
if the proof y is bogus (not valid). Thus ≤ (8M/2) + (7M/2) = 15M/2 = (15/16)8M clauses are
satisfied for the certficate y of any x 6∈ L. We go over this discussion in more detail next lecture and
use the result to prove that no (16/15 + ε)-approximation (see definition in next lecture) exists for
SAT.

4Arora, S.; Safra, S. 1992. “Probabilistic checking of proofs: A new characterization of NP.” Proceedings of the
33rd IEEE Symposium on Foundations of Computer Science. IEEE, New York, pp. 2–12.

5Guruswami, V. et al. “A tight characterization of NP with 3 query PCPs.” Proceedings 39th Annual Symposium
on Foundations of Computer Science. 1998: 8–17.

Hastad, J. “Some optimal inapproximability results.” In Proceedings of the 29th ACM Symposium on the Theory
of Computation, 1997: 1–10.

5

