6.841J/18.405J: Advanced Complexity Theory Wed, Apr 23, 2003
Lecture 19
Instructor: Prahladh Harsha Scribe: Megumi Ando

Today
e Recap of PRGs and deterministic simulation of BPP

e (s, €)-PRG [Nisan-Widgerson]

Definition of PRGs [Blum-Micali-Yao|

From last lecture, we defined a function G : {0,1}* — {0,1}" to be a PRG, if no polynomial size
circuit can distinguish its output from a purely ranom output. That is, if V polynomial sized circuits
C and V polynomials p:

|Prou,[C(G(z) = 1] = Prycu,[Cly) = 1]| < ﬁ

and G is efficient, meaning it is constructible in p(s).

Derandomizing BPP

e Given a BPP algorithm, we can run the algorithm on a pseudorandom string G(x), Vz, and
take majority vote.

e Notice that OWTF exists = BPP =\, DTIME(2™")

Observation

Do we really need such a hard definiton of PRGs for BPP simulation? Using the Blum-Micali-Yao
definition of PRG, we can not only derandomize BPP, but we can prove a much stronger statement:
PRG exist = P # NP.

Let’s weaken the defintion of PRGs. If our goal is just to derandomize BPP, then it suffices that:

e G runs in 290

e G works against circuits of size n or even some simple polynomial n?

Alternate Definition of PRGs [Nisan-Widgerson]
We define a function G : {0,1}* — {0,1}" to be a (5, €)-PRG, if V circuits C of size at most S:
|Preeu,[C(G(z) = 1] = Pryc v, [Cly) =1]| <€

Differences from previous definition:
e G fools circuits of size S.
e Probabalistically, the difference between a purely random string and the string generated by
Gise# 1.
p(n)

e G constructible in 20(5).



Observation

If (n?, &5)-PRG G : {0,1}°0¢™ — {0,1}" exists = BPP C (),.o DTIME(2™). This really
implies BPP = P.

Definition of Average Case Hardness

A function f : {0,1}"™ — {0, 1} is (S, €)-hard if V circuit C of size at most S,
1
ProjC() = f@)]] < 5+

Notice that given an (S, €)-hard function f, we can construct a PRG G : z — x o f(z) which is
(S,€)-hard. (We will use a similar idea to define designs.)

Definition of Designs

A collection of subsets S = {5, ..., S, } of a universe U = [s] = {1, ..., s} is a (I, a)-design over [s] if:
o |S;|=1,Yi
. [SinS;| <a,Vi#j

Notation
o Let S ={S1,...,5,} be a (I, a)-design over [s].
o Let f:{0,1}" — {0,1} be a hard function.

e For any string z, let z|g denote the substring indexed by the bit positions of S.
(E.g., if z = 01000111, S = {1, 3,5, 7}, then z|s = 0001.)

e Define the Nisan-Widgerson PRG NW; ; : {0,1} — {0,1}" as follows:
z > f(2]|51) 0 ... 0 f(2]|Sy)

Il Ilss Tius Tlse
i
v
MW N2l ) LF =] 2] L2 s



Lemma

For any constant v > 0 and any [,n, a, there exists an (I, s)-design over [s] that is constructible in
polynomial time in s and n, where:

e s=0(%)

a

e a=rlogn

Theorem

There exists a function f : {0,1}} — {0,1}, computable in DTIME(2°®), which V sufficiently
large n, when f is restricted to n bits, is (27, 10n) -hard
= there exists a function NWy,, : {0,1}90°s™) — {0,1}" which is (n?, &)-PRG.

Proof

If NW;,, is not a PRG, then there exists a predictor P that predicts bit; based on {bits,..., bit;_1}
better than a random guess. That is:

1
PrIP(f(211).f(2ISi 1)) = F(Z1S0] > 5+ 7o
By averaging, we can determine all the bits of z except for those in S; and the above statement
would still hold. Variables in each of f(2|S;), j # ¢ are at most a = ylogn in number. Thus each
of these can be computed using a lookup table T of size at most 2* = n. So:

1 1
PriP[Ty, ..., Tioa] = f(2[80)] 2 5 + 75
where P is of size 200" = n2?, T; 1s of size n, and P[T%,...,T;—1] is of size O(n3). Thus, f is

approximatable by a circuit of size n3. Which is a contradlctlon because f is (2¢, ;1-)-hard.

Average Case verses Worse Case

So far, we have shown that average case hardness translates into pseudorandomness. But what can
we say about worst case hardness? In the case of a Permanent (See Lecture 15 and Lecture 16),
worst case hardness is equivalent to average case harness. Thus, if there exists no circuit of size at
most 2¢* that computes the Permanent, then BPP = P.

Impagliazzo, Widgerson, Trevisan, Sudan, and Vadhan show how to convert a wosrt case hardness
function f € EXP into another function f' € EXP which is average case hard, using error-correcting
codes. Thus, we conclude that worst-case hardness also translates into pseudorandomness.

How close are we to prove BPP = P?

We have shown that proving circuit lower bound imply derandomization. Similarly, if NEXP has
some form of circuit lower bounds, then AM = NP. IKW prove a weaker converse: AM # NEXP &
NEXP is not C NP/Poly



Alternate Proof of BPP ¢ X,

The NW paradigm indicate that BPP is no harder than finding a hard function. This gives the
following ¥ algorithm for BPP:

e Guess a hard function f: {0,1}} — {0,1}.

e For all circuits C of size at most 2¢, check that C' does not approximate f on more than % +e€
fraction of imputs.

e Use f to construct NWy , and use this PRG to derandomize the BPP algorithm.



