6.841/18.405J: Advanced Complexity Monday, April 28th, 2003
Lecture 20: Proof Complexity, part I

Instructor: Eli Ben-Sasson Scribe: Samuel Fiorini

1 Introduction

Suppose we are given a Boolean circuit C(z1,...,2,) (later C will be a CNF formula). Then any
satisfying assignment a € {0,1}" is a short proof of the claim

Ja € {0,1}": C(a) = 1.

Hence the language SAT has short membership proofs. By definition, any language in NP has short
membership proofs. However if we were to prove the claim

Va € {0,1}" : C(a) =0,

then the simplest way would be to enumerate all possible assignments a € {0,1}"™. In other words,
we can easily find exponential size membership proofs for co-SAT. Therefore a natural question is:
“given a circuit C € co-SAT, what is the size of a shortest proof that C € co-SAT?”. This is a central
question in proof complexity. Let us now formally define proof systems.

Definition. A proof system P (for co-SAT) is a 2-tape Turing Machine P(.,.) such that

1. (efficiency) P runs in polynomial time in both inputs,

2. (soundness and completeness) C € co-SAT iff there exists a string « such that P(C,n) = 1.

Observe that proof systems are not allowed to use randomness or interaction, and the size of the
proof 7 is not required to be polynomial in the size of the circuit C. Adding this latter requirement
gives the notion of ‘super’ proof systems:

Definition. A proof system P is called super if there exists a positive integer k£ with the following
property. For all circuits C € co-SAT, there exists a proof ¢ such that |rc| < |C|F and P(C,7¢) = 1.

The main open question of proof complexity can be now stated as : “does there exist a super
proof system?”. This question is actually equivalent to NP =? co-NP.

Theorem 1 (Cook,Reckhow) There ezists a super proof system iff NP = co-NP.

Proof. Assume there exists a super proof system. Then there exists a polynomial size proof that C
is unsatisfiable for every circuit C € co-SAT. Therefore co-SAT € NP, hence co-NP C NP. Similarly
it implies that SAT € co-NP, hence NP C co-NP.

Conversely, if co-NP = NP, then co-SAT € NP and there exists a verifier V (.,.) for co-SAT that
runs in polynomial time in the first input. Hence V yields a super proof system.]

The motivations of proof complexity include:

1. Circuit design: suppose that we would like to verify that a circuit C computes a given function
f (e.g., that a certain chip really computes the product of two numbers). We would like to
have an algorithm based on some proof system that could prove statements of the form f =C
as efficiently as possible.

2. The NP ¢ P/poly question: empirically it seems to be a difficult question. But can we prove
that there is something inherently difficult in it? It turns out that finite versions of this
statement can be shown to be hard to prove for some fixed proof system.

3. Automated theorem proving and related questions: for instance, suppose there exists a short
proof for a given statement, can we efficiently find such a proof?

4. Analysis of algorithms for NP-complete problems: the execution of such an algorithm (even
if it is exponential) can be used to prove that a certain circuit in co-SAT is not satisfiable.
Therefore lower bounds on the length of a proof give rise to lower bounds on the running time
of the algorithm.

2 Resolution

(From now on, we restrict circuit C to be a CNF formula. Recall that a literal is either a variable x
or its negation T, a clause is a disjunction of literals (sometimes encoded as a set of literals), and a
CNF formula is conjuction of clauses (which can also be encoded as a set of clauses).

The resolution mechanism starts with the set of clauses of a given CNF formula and sequentially
derives new clauses from previous clauses until it shows that, in a satisfying assignment, a certain
variable has to be set to 0 and 1 at the same time. This proves the unsatisfiability of the formula.
Let C be a CNF formula over the variables x;1, 2, ..., T, a resolution proof uses the two following
rules to generate new clauses:

1. Resolution Rule: From any two clauses of the form C V x; and D V Ty, derive C'V D. This is

often written
CVzx, DVTL

cvD

2. Weakening Rule: From clause C, derive clause C V £, where £ is any literal.

_C
cve

The weakening rule is not necessary to enforce the completeness of resolution, but it turns out to
be useful in proofs. A resolution proof (or refutation) of length s for C is a sequence m = (L, ..., Ly)
of lines such that

(i) each line is a clause,
(i) the last line L, is the empty clause) (which is unsatisfiable by definition),

(iii) each line L; is either an aziom (that is, an element of C) or derived from previous lines via the
resolution or weakening rule.

Example. Consider the CNF formula C on variables z1, ..., 2, with clauses Cy = {z1,%2,...,Zn},
Ci = {71}, C2 = {Z3}, ..., Cp, = {Tn}. We can prove that C is unsatisfiable by resolution as follows.
First, apply the weakening rule to Cy and C} to obtain the clause {z2, z3,...,z,}. Then apply the
weakening rule to this new clause and C5 to obtain the clause {z3, z4,...,z,}. Continue in a similar
fashion until you infer the empty clause. The corresponding resolution proof is m = (L1, ..., Lapt1)
with

! {z1,22,.. ., xn} \ {21, .., Zi—p—1} fn+2<i<2n+1

0

/

{zn}

{z3,...,2,}

/

{zg,...,2,}

/

{z1,29,..., T4} {71} {72} e {7}

A resolution proof gives rise to a DAG (Directed Acyclic Graph) called the proof-DAG. The
nodes of the DAG are the lines of the proof, and a node has one edge coming in from each one of the
premises it was derived from. Thus, the sources of the proof-DAG are the axioms, and the DAG has
a single sink node, which is labeled §. We allow to label more than one node with the same axiom.

A proof is said to be tree-like if its DAG is a tree. For instance, the above proof is tree-like. In
general, resolution proofs are not necessarily tree-like. Although there are contradictions C which
admit small (linear length) resolution proofs but need long (exponential length) tree-like resolution
proofs, tree-like resolution is very interesting from a theoretical and practical point of view. For
instance, most known SAT algorithms (such as the DLL and DP algorithms) use tree-like resolution.

3 Complexity measures

Let C be a CNF formula. Then we define

Sr(C) = min size of a resolution proof for C,
St(C) = min size of a tree-like resolution proof for C,
width(C) = min (max width of a line in),

7 proof for C

where the size of a proof is the number of symbols in it (this measure is polynomially related to the
length for resolution proofs), the width of a clause is the number of literals in it. By convention, all
above quantities equal oo if C is satisfiable. At first sight, it may seem that S7(C) and Sg(C) are
the most interesting parameters, but it turns out that width(C) is also very interesting in that lower
bounds on width(C) are often easier to obtain and yield lower bounds on St (C) and Sg(C).

4 Completeness of proof by resolution

Theorem 2 A CNF formula is unsatisfiable if and only if it admits a resolution proof.

Proof. The backwards implication follows directly from the soundness of the resolution and weak-
ening rules, so let’s do the forward implication. Let C be a CNF formula on variables z1, ..., Z,.
If n = 0 then C has only one clause, namely the empty clause, so it has a one line resolution proof.

Now assume that n > 1 and every unsatisfiable CNF formula with n — 1 variables has a resolution
proof. We will construct a CNF formula C' such that (i) C' has n — 1 variables, (ii) C' is derived
from C by the resolution rule (we won’t use the weakening rule), and (iii) C' is unsatisfiable. Let

¢= AN c

ae{0,1}n—1

for some clauses C!, to be determined. Fix a € {0,1}"~!. Because C is unsatisfiable, it must possess
clauses Cy and C4 such that Cy(a,0) = Ci(a,1) = 0.

Case 1. If z,, is not a literal of Cy then we set C}, = Cy (T, cannot be a literal of Cj).
Case 2. If T, is not a literal of Cy then we set C,, = C1 (z,, cannot be a literal of C).

Case 3. Otherwise Cp = C§ V z, and C1 = C{ V T, for some clauses Cy and Ci on 21, ..., Tn_1.
We then derive C!, = C} vV C] by one application of the resolution rule.

This concludes the construction of C'. By induction, we know that C' has a resolution proof ='.
We can find a proof for C, for instance, by inserting in 7’ all the axioms of C and then the clauses
of C' which are derived from two axioms of C by the resolution rule.]

Example. Fori € 1,...,n and o € {0,1}", let {o,; = z; if @; = 0 and £, ; = T; if @; = 1. Then
define

caz\n/ea,,- and C= A Ca.
i=1

ac{0,1}"

The ‘universal formula’ C has 2™ clauses, each of width n. Each of its clauses C, satisfies all
assignments except a. It follows that C has no resolution proof of length less than 27.

The above formula has no short resolution proof in terms of n, but is itself very long. Can we
find short CNF formulas that have long resolution proofs ? Random CNF formula have been proved
to be hard for resolution, but there are also explicit examples of CNF formulas which require long
resolution proofs, as we will see now.

5 Formulas which are hard for resolution

The pigeonhole principle says that it is impossible to squeeze n+1 pigeons in n holes if no two pigeons
fit in one hole. We can express the pigeonhole principle by a CNF formula PHP,, as follows. PHP,,
lies and says “there is a way to squeeze n + 1 pigeons in n holes”. For each pigeon i € {1,...,n+1}
and hole j € {1,...,n}, formula PHP, has a variable z;;. The interpretation of z;; is: z;; = 1
if pigeon 4 is in hole j. Then we can express “pigeon i occupies at least one hole” by a clause
P; = \/}_, ;; and “pigeons i and i’ are not both in hole j” by a clause H; y j = Tij V Tirj. Then

pre, = A AA| A
1<i<n+1 1<i#i! <n+1
1<i<n

expresses what we want.
Theorem 3 (Haken 1989) Sg(PHP,) = 2%,

So PHP,, is indeed hard for resolution. But there are more CNF formulas which are hard for
resolution:

Theorem 4 (Raz 2002) Resolution cannot efficiently prove statements of the type “function f is
not in P/poly”.

There are two ways to interprete this results: (i) it is hard to prove circuit lower bounds, (ii)
resolution is weak. (Interestingly, Ran Raz derived the latter result from a lower bound on the
minimum length of a resolution proof for the weak pigeonhole principle.) This is related to work by
Razborov and Rudich on ‘natural proofs’. They showed that all known circuit lower bounds have
certain ‘natural’ properties, and that the existence of hard functions contradicts the existence of
natural proofs of general circuit lower bounds. Thus, a circuit lower bound for arbitrary circuits
might require some totally new proof techniques. The ultimate goal in this direction, which currently
seems well beyond our reach, is to prove the independence of the claim P # NP from some strong
first order theory, such as ZFC.

6 Two techniques for obtaining lower bounds

In the next lecture, we will prove lower bounds for the resolution proof system. Given a CNF formula
C, we want to know what is it about the structure of C that makes it hard to prove for a fixed proof
system like resolution. There are two general approaches:

1. investigate the combinatorics of DAG-proofs;

2. use the interpolation method.

The interpolation method implements a natural idea that fails at some point: connect CNF
formulas to circuits and use circuit lower bounds. The basic argument here is “if this CNF formula
has a short proof, then some function can be computed by a small circuit”. Consider an unsatisfiable
CNF formula C of the form C = Co(z,y) A C1(x, z). Krajicek’s theorem says that if we have a short
resolution proof for C then there exists a small circuit that determines which one of Cy or C; is not
satisfiable when the x variables have been fixed to some given truth values.

Theorem 5 (Krajicek’s interpolation theorem) IfC = Co(z,y)AC1(z,z) has a resolution proof
of length s (so, in particular, C is unsatisfiable), then there exists a circuit S(x) of size at most s
that computes, for each o € {0,1}1*!, an index i = S(a) with the following property: if i = 0 then
Co(w,y) is unsatisfiable; if i = 1 then Ci(a, 2) is unsatisfiable.

Note that the interpolation method fails for proof systems which are stronger than resolution.

