Today

Savitch’'s Theorem (clean(er) proof)

Diagonalization: Power & Problems

Relativization

Baker-Gill-Solovay

Introduction to Alternation

Madhu Sudan, : 1

Proof of Lemma 1

Algorithm STCONN(G, s, t, /)

e Determines if 4 path of length < / from s
totin .

e Compute G? = graph with same vertex set
as GG where u <+ v if distance from u to v
<2in (.

e Return STCONN(G?,s,t,0/2)

Inductively claim: takes space log /- log n.
Crucial step in proof similar to Lemma 3.

Lemma 3: If L; <;, Ly and Ly in SPACE(s2)
then Ll S SPACE(281 + 32).

Madhu Sudan, : 3

Savitch’s theorem

Thm: NSPACE(s(n)) C SPACE(s(n)?) for
s(n) > log n

Proof steps:
Lemma 1: S-T-Connectivity is in Log? Space.
Lemma 2: Lemma 1 suffices.

Proof of Lemma 2: NSPACE(s(n))
corresponds to determining s-t-connectivity in
graph of size 2°(),

Madhu Sudan, : 2

Moving on: Big picture in complexity

e E.g., Would like a complete map of
complexity?

e Unfortunately: only two tools so far -
Algorithms & Diagonalization.

e Diagonalization can prove:

— Problems undecidable.

— Space hieararchy, time hierarchy.

— Ladner's theorem (between any two
classes is an infinitely dense hierarchy).

;
— But can it resolve NP = P?

Madhu Sudan, : 4

Aside: Bird’s eyeview of Ladner’s
theorem
e Suppose P # NP.
e Let Ly €P and Ly be NP-complete.
e Let ny =1 and n; = 2™i—1,

e Let L = L, for strings of length [n;_1,n;)
for odd ¢, and L = L4 for strings of length
[ni—i,m;) for even i.

e L €P? Probably not.
e Is L NP-complete? Probably not.

e Ladner's theorem picks a more careful
choice of n;'s (by “lazy diagonalization”),
to eliminate the “Probably’'s” above.

Madhu Sudan, : 5

Power of diagonalization

) ?
e Can it resolve NP = P?
e Question raised in the seventies.
e Baker-Gill-Solovay: No!

e Err.... some caveats

Madhu Sudan, : 7

e Won't cover theorem in detail.

Madhu Sudan, : 6

Relativization

Defn: Let C' be a complexity class of
languages decidable with machines having
a certain resource bound. Let A be any
language. Then C4 is the set of languages
accepted by oracle machines, with the same
(similar?) resource bound as machines in C,
having access to oracle for A.

Warning: Not really a definition!

Defn: P4 is the set of all languages accepted
by deterministic polynomial time oracle Turing
machines with access to oracle for A.

Defn: NP# is the set of all languages accepted
by non-deterministic polynomial time oracle
Turing machines with access to oracle for A.

Madhu Sudan, : 8

B-G-S Proposition

Prop: If diagonalization shows C; ¢ Cs, then
for every A, C{* ¢ C3.

Jargon: C; ¢ Cs relativizes.

Proof (of Prop/Jargon):

e Exists machine in C; that can simulate
any machine in Cs. (Since diagonalization
works.)

e Augment this machine into an oracle
machine.

e Machine now shows that Cf' diagonalizes

ca.

Madhu Sudan, : 9

BGS Lemmas

Lemma 2 There exists an oracle B such that
NPEB ;APB.

Proof:

e Insert proof here.

Madhu Sudan, : 11

BGS Lemmas
Lemma 1 There exists an oracle A such that
NPA =PA.

Proof: Take some language that is sufficiently
powerful. Example: Let A be any PSPACE-
complete language. Then NP4 = NPSPACE
= PSPACE = P4.

Madhu Sudan, : 10

BGS Warnings

e Proof makes sense only when specialized
(to say P vs. NP).

e Otherwise, it is pedagogy, not
mathematics.

e Only rules out very specific proofs. Minor
variations not accepted!

e Often misinterpreted, mispresented, misrepresent
etc.

Madhu Sudan, : 12

Constructive use of relativization

e What happens when A is an interesting
problem, and C an interesting class? C4
must be interesting too?

e Example - we considered C' = NP and A
— PSPACE. What if A = NP? Is NPNP =
NP?

e No: actually get something new!

Madhu Sudan, : 13

Note: we get the power to negate the oracles’
response (or do any other polynomial time
computation on it).

Madhu Sudan, : 15

DNF Minimization

Defn: MINDNF is the language consisting
of pairs (¢, k), such that ¢ is a DNF formula
such that no DNF formula with fewer than k
literals is equivalent to ¢.

Prop: MINDNF is in NPNP

Proof: Below is an NP oracle machine M
that accesses a SAT oracle:

e Guess a formula v with fewer than k
literals.

o Ask SAT oracle if there exists an
assignment x such that ¢(z) # ¢(z).

e Accept if oracle says NO.

Madhu Sudan, : 14

Introduction to Polynomial Hierarchy

Defn: X = NP. For i > 1, ©F =
UAGEPINPA. P = {L|IL € ¥F. PH =

Uis0Z! = UisolI!.
Belief: For every i > 0 X7 # %F .

Jargon: The Polynomial Hierarchy does not
collapse.

More on the hierarchy later.

Madhu Sudan, : 16

Alternation e Alternation = Resource: write down
computation tree: Count max. # times
we alternate enter an 3 node and then a V

e The hierarchy gains its power by node.

complementing responses of oracles. .
P g resp e This is a (valuable) resource!
e DeMorgan's Law =; instead of existential
guesses, it can now make universal guesses.

e Suppose we built this into a Turing
machine.

e Machine has two special states: d and V,
both with two arcs leading out.

— d state accepts if one of the two paths
leading out accepts.
— V state accepts if both paths accept.

Madhu Sudan, : 17 Madhu Sudan, : 18

Alternating complexity classes bounded ATMs starting in existential state
and making at most ¢ — 1 alternations.

e Three basic resources in ATM:
— Time
— Space
— Alternations

o Classes:

— ATIME[t] = Languages accepted by
ATMs running in time t(n).

— ASPACE[s] = Languages accepted by
ATMs using space s(n).

— (only of technical interest) ATISP[a,t, s]
= ... a(n) alternations, t(n) time, and
s(n) space.

e PH: XF = languages accepted by polytime

Madhu Sudan, : 19 Madhu Sudan, : 20

Basic theorems about alternations

Thm 1: ATIME(f) C SPACE(f) CATIME(f?).
Thm 1: ASPACE(f) = TIME(20().

Madhu Sudan, : 21

