Today

- Savitch's Theorem (clean(er) proof)
- Diagonalization: Power & Problems
- Relativization
- Baker-Gill-Solovay
- Introduction to Alternation

Savitch's theorem

Thm: $NSPACE(s(n)) \subseteq SPACE(s(n)^2)$ for $s(n) > \log n$

Proof steps:

Lemma 1: S-T-Connectivity is in Log^2 Space.

Lemma 2: Lemma 1 suffices.

Proof of Lemma 2: NSPACE(s(n)) corresponds to determining s-t-connectivity in graph of size $2^{s(n)}$.

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

©Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Proof of Lemma 1

Algorithm $STCONN(G, s, t, \ell)$

- Determines if \exists path of length $\leq \ell$ from s to t in G.
- $\begin{tabular}{ll} \bullet & {\sf Compute} \ G^2 = {\sf graph} \ {\sf with} \ {\sf same} \ {\sf vertex} \ {\sf set} \\ {\sf as} \ G \ {\sf where} \ u \leftrightarrow v \ {\sf if} \ {\sf distance} \ {\sf from} \ u \ {\sf to} \ v \\ & \leq 2 \ {\sf in} \ G. \\ \end{tabular}$
- Return STCONN $(G^2, s, t, \ell/2)$

Inductively claim: takes space $\log \ell \cdot \log n$.

Crucial step in proof similar to Lemma 3.

Lemma 3: If $L_1 \leq_{s_1} L_2$ and L_2 in $\mathsf{SPACE}(s_2)$ then $L_1 \in \mathsf{SPACE}(2s_1 + s_2)$.

Moving on: Big picture in complexity

- E.g., Would like a complete map of complexity?
- Unfortunately: only two tools so far -Algorithms & Diagonalization.
- Diagonalization can prove:
 - Problems undecidable.
 - Space hieararchy, time hierarchy.
 - Ladner's theorem (between any two classes is an infinitely dense hierarchy).
 - But can it resolve NP $\stackrel{?}{=}$ P?

Aside: Bird's eyeview of Ladner's theorem

- Suppose $P \neq NP$.
- Let $L_1 \in P$ and L_2 be NP-complete.
- Let $n_1 = 1$ and $n_i = 2^{n_{i-1}}$.
- Let $L = L_1$ for strings of length $[n_{i-1}, n_i)$ for odd i, and $L = L_2$ for strings of length $[n_{i-i}, n_i)$ for even i.
- $L \in \mathbb{P}$? Probably not.
- Is L NP-complete? Probably not.
- Ladner's theorem picks a more careful choice of n_i 's (by "lazy diagonalization"), to eliminate the "Probably's" above.

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Won't cover theorem in detail.

Power of diagonalization

- Can it resolve NP $\stackrel{?}{=}$ P?
- Question raised in the seventies.
- Baker-Gill-Solovay: No!
- Err.... some caveats

Relativization

Defn: Let C be a complexity class of languages decidable with machines having a certain resource bound. Let A be any language. Then C^A is the set of languages accepted by oracle machines, with the same (similar?) resource bound as machines in C, having access to oracle for A.

Warning: Not really a definition!

Defn: P^A is the set of all languages accepted by deterministic polynomial time oracle Turing machines with access to oracle for A.

Defn: NP^A is the set of all languages accepted by non-deterministic polynomial time oracle Turing machines with access to oracle for A.

B-G-S Proposition

Prop: If diagonalization shows $C_1 \not\subset C_2$, then for every A, $C_1^A \not\subset C_2^A$.

Jargon: $C_1 \not\subset C_2$ relativizes.

Proof (of Prop/Jargon):

- Exists machine in C_1 that can simulate any machine in C_2 . (Since diagonalization works.)
- Augment this machine into an oracle machine.
- Machine now shows that C_1^A diagonalizes C_2^A .

BGS Lemmas

Lemma 1 There exists an oracle A such that $NP^A = P^A$.

Proof: Take some language that is sufficiently powerful. Example: Let A be any PSPACE-complete language. Then $NP^A = NPSPACE = PSPACE = P^A$.

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

©Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

BGS Lemmas

Lemma 2 There exists an oracle B such that $NP^B \neq P^B$.

Proof:

• Insert proof here.

BGS Warnings

- Proof makes sense only when specialized (to say P vs. NP).
- Otherwise, it is pedagogy, not mathematics.
- Only rules out very specific proofs. Minor variations not accepted!
- Often misinterpreted, mispresented, misrepresent etc.

Constructive use of relativization

- What happens when A is an interesting problem, and C an interesting class? C^A must be interesting too?
- Example we considered C = NP and A = PSPACE. What if A = NP? Is $NP^{NP} = NP$?
- No: actually get something new!

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Note: we get the power to negate the oracles' response (or do any other polynomial time computation on it).

DNF Minimization

Defn: MINDNF is the language consisting of pairs (ϕ, k) , such that ϕ is a DNF formula such that no DNF formula with fewer than k literals is equivalent to ϕ .

Prop: MINDNF is in NP^{NP}.

Proof: Below is an NP oracle machine ${\cal M}$ that accesses a SAT oracle:

- ullet Guess a formula ψ with fewer than k literals.
- Ask SAT oracle if there exists an assignment x such that $\psi(x) \neq \phi(x)$.
- Accept if oracle says NO.

©Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Introduction to Polynomial Hierarchy

 $\begin{array}{lll} \text{Defn:} & \Sigma_1^P = \text{NP.} & \text{For} \ i > 1, \ \Sigma_i^P = \\ \cup_{A \in \Sigma_{i-1}^P} NP^A. & \Pi_i^P = \{\overline{L}|L \in \Sigma_i^P. & \text{PH} = \\ \cup_{i > 0} \Sigma_i^P = \cup_{i > 0} \Pi_i^P. & \end{array}$

Belief: For every i > 0 $\Sigma_i^P \neq \Sigma_{i+1}^P$.

Jargon: The Polynomial Hierarchy does not collapse.

More on the hierarchy later.

Alternation

- The hierarchy gains its power by complementing responses of oracles.
- DeMorgan's Law = instead of existential guesses, it can now make universal guesses.
- Suppose we built this into a Turing machine.
- Machine has two special states: ∃ and ∀, both with two arcs leading out.
 - — ∃ state accepts if one of the two paths leading out accepts.
 - ─ ∀ state accepts if both paths accept.

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

- Alternation = Resource: write down computation tree: Count max. # times we alternate enter an \exists node and then a \forall node.
- This is a (valuable) resource!

©Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Alternating complexity classes

- Three basic resources in ATM:
 - Time
 - Space
 - Alternations
- Classes:
 - ATIME[t] = Languages accepted by ATMs running in time t(n).
 - ASPACE[s] = Languages accepted by ATMs using space s(n).
 - (only of technical interest) ATISP[a, t, s]= ... a(n) alternations, t(n) time, and s(n) space.
- ullet PH: $\Sigma_i^P=$ languages accepted by polytime

bounded ATMs starting in existential state and making at most i-1 alternations.

Basic theorems about alternations

 $\mathsf{Thm}\ 1\colon \mathsf{ATIME}(f)\subseteq \mathsf{SPACE}(f)\subseteq \mathsf{ATIME}(f^2).$

Thm 1: $\mathsf{ASPACE}(f) = \mathsf{TIME}(2^{O(f)}).$