Today

- Polynomial Hierarchy
- Complete Problems
- PH Non-collapse Hypothesis
- Application: Non-uniform Complexity.

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

PH: Simple properties

- $\Pi_i^P = \{L | \overline{L} \in \Sigma_i^P \}.$
- $\Pi_{i-1}^P \subseteq \Sigma_i^P \subseteq \Pi_{i+1}^P$.
- $PH = \bigcup_{i>1} \prod_{i=1}^{P} \prod$
- As in assertion "TQBF is complete for PSPACE", can postpone all computations to the end; and can assume final computation simply verifies if a 3-CNF formula is satisfied.
- Σ_i^P Complete problem:

$$i$$
-QBF = $\{\phi | \exists \mathbf{x}_1 \forall \mathbf{x}_2 \dots \phi(\mathbf{x}_1, \dots, \mathbf{x}_i) = \mathsf{true} \}.$

Polynomial Hierarchy

Recall definitions

- Σ_i^P = Languages accepted by polynomial time bounded ATM starting in existential state with i alternating quantifiers.
- Π_i^P = Languages accepted by polynomial time bounded ATM starting in universal state with i alternating quantifiers.
- PH = $\bigcup_{i|\geq 1} \Sigma_i^P$.
- Convention: $\Sigma_0^P = \Pi_0^P = P$.
- PH "discovered" by Meyer & Stockmeyer.

©Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

- $\Sigma_1^P = NP; \Sigma_{i+1}^P = NP^{\Sigma_i^P}.$
- $\bullet \ A \in \Sigma_{i+1}^P \Leftrightarrow \exists B \in \Pi_i^P, c < \infty \text{ s.t.}$

 $x \in A \Leftrightarrow \exists y, |y| \le |x|^c, (x, y) \in B.$

A non-trivial theorem

Theorem[Umans '2000]: MINDNF is Σ_2^P -complete.

Conjectured since the discovery of PH.

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

PH non-collapse hypothesis

Jargon: Hierarchy "collapses" if $\Sigma_i^P = \Pi_i^P$.

Hypothesis: Hierarchy does not "collapse", i.e., For every i, $\Sigma_i^P \neq \Pi_i^P$.

Why "collapse"? Next proposition explains.

Why PH interests us

- Good question. Should ask about every (complexity) class.
- Motivation 1: MINDNF. But why consider the entire infinite hierarchy.
- Motivation 2:
 - Tests our ability to work with alternation.
 - We know a lot about quantifiers, but don't know how to eliminate even one quantifier!
 - Belief: Can not remove quantifiers!
 - A stronger belief than NP $\neq P$, NP \neq co-NP etc.
 - Many complexity theoretic assertions can be proved under this belief.

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Collapse of the PH

 $\begin{array}{l} \text{Proposition: For } i \leq j \text{,} \\ \Sigma_i^P = \Pi_i^P \Rightarrow \Sigma_j^P = \Pi_j^P = \Sigma_i^P = \Pi_i^P. \end{array}$

Proof:

- By induction on j. True for j=i. Let j>i and assume true for j-1.
- Let $A \in \Sigma_j^P$ and let $B \in \Pi_{j-1}^P$ s.t. $x \in A \Leftrightarrow \exists y \text{ s.t. } (x,y) \in B.$
- $\begin{array}{l} \bullet \ \ \text{By induction} \ B \in \Sigma_i^P \ \ \text{and so} \ \exists C \in \Pi_{i-1}^P \\ \text{s.t.} \ \ (x,y) \in B \Leftrightarrow \exists z \ \text{s.t.} \ \ (x,y,z) \in C. \end{array}$
- So $x \in A$ iff $\exists y,z$ s.t. $(x,y,z) \in C$. Thus $A \in \Sigma_i^P$.

PH non-collapse hypothesis

Why do we like it?

- Can't prove it false!
- It implies many other things we believe.
- Examples:
 - NP has randomized polynomial time algorithms implies hierarchy collapses.
 - NP has sparse complete language implies hierarchy collapses.
- Today's example: NP has small circuits implies hierarchy collapses.

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

- Equivalently: design a family of "circuits", one for each n and study circuit size as function of n.
- To meaningfully study questions such as "Is NP=P?", restrict circuit size to be polynomial in n.

Circuit complexity/Non-uniform computation

- Does solving a problem become much easier if we only have to design an algorithm to work for one fixed n at a time?
- Certainly, if the language is unary!
- But not necessarily if languages are binary!
- How do we measure running time in this case?
 - Design a family of "algorithms": one for each n and study runtime as function of n.

©Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

10

Boolean circuits

- Circuit is a DAG (directed acyclic graph).
- Node categories:
 - Input gates: Distinct labels 1 to n.
 - Output gates: Distinct labels 1 to m.
 - Computation gates: AND, OR, NOT.
- Wires: Run between gates.
 - Input gates have no wires coming in.
 - Computation gates have one (if NOT), or two (if OR/AND), wires coming in.
 - Output gates have no wires going out.
- Size = # of gates. (Sometimes allow unbounded fan-in OR/AND gates: in such case size = # wires.)

- Circuit computes a function $f: \{0,1\}^n \to \{0,1\}^m$.
- Our interest: E.g. smallest circuit deciding SAT (m = 1).

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Can think of a_n as describing circuit, and M(x,a) computes value of circuit a on input x. Conversely, given any advice a and polytime TM M, can build poly-sized circuit that determines value of M on input x and advice a. Thus $P/_{\mathrm{poly}}$ is the class of languages with polynomial sized circuit family.

Turing machines with advice

- Alternate interpretation of non-uniform computation: Give "advice" to a Turing machine.
- Fix a polynomial p. Let a_1, a_2, \ldots with $a_n \in \{0,1\}^{p(n)}$ be advice strings. Given $x \in \{0,1\}^n$, an advice Turing machine M uses the advice a_n to determine if $x \in L$ or not.

Defn: $L \in P/_{\mathrm{poly}}$ if there exists a polynomial time bounded Turing machine M, polynomial p and advice strings a_1, \ldots, a_n, \ldots with $|a_n| \leq p(n)$ such that for every $x \in \{0,1\}^*$,

$$x \in L \Leftrightarrow M(x, a_{|x|}) = 1.$$

©Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Circuit complexity

- Given Boolean function family $\{f_n\}_n$ with $f_n: \{0,1\}^n \to \{0,1\}$ show lower bounds on smallest circuit computing f_n .
- Hope: Can show NP \neq P by showing NP $\not\subseteq$ P/poly.
- Wait what?
- ullet P/ $_{
 m poly}$ includes undecidable languages!
- Why should it not just contain NP, if it is so powerful!
- Karp-Lipton: Non-uniformity is not too powerful in deciding uniform languages.
 Specifically:

Thm: If $NP \subseteq P/_{poly}$ then PH collapses.

Karp-Lipton

Assume M is an advice TM deciding SAT.

Defn: a_n is GOOD if $M(\phi, a_n)$ decides $\phi \in \mathsf{SAT}$?.

Karp-Lipton Lemmas:

Lemma 1: GOOD is in Π_2^P .

(Wonderful: we have shown NP is in PH!)

Lemma 2: If NP \subseteq P/ $_{poly}$ and GOOD is in Π_i^P , then $\Sigma_{i+2}^P = \Sigma_{i+1}^P$.

Note: deliberately ignoring the fact that we know GOOD is very low. We don't need it to collapse the hierarchy.

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

©Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Proof of Lemma 1

Lemma 1: GOOD is in Π_2^P .

Proof: a_n is GOOD, if

$$\forall \psi, \ M(\psi, a_n) = 1 \Rightarrow \exists \alpha \text{ s.t. } \psi(\alpha) = 1$$

$$M(\psi, a_n) = 0 \Rightarrow \forall \beta \psi(\beta) = 0.$$

Equivalently:

$$\forall \psi, \beta \exists \alpha \text{ s.t. } ((M(\psi, a_n) = 0) \lor \psi(\alpha) = 1)$$

 $\land M(\psi, a_n) = 1) \lor \psi(\beta) = 0)).$

Proof of Lemma 2

Lemma 2: If NP \subseteq P/ $_{\mathrm{poly}}$ and GOOD is in Π_i^P , then $\Sigma_{i+2}^P=\Sigma_{i+1}^P$.

Proof: Will show (i+2)-QBF in Σ_{i+1}^P . Assume for simplicity that i is odd.

Basic idea: Given formula ϕ where we wish to decide if

$$\exists \mathbf{x}_1 \forall \mathbf{x}_2 \dots \exists \mathbf{x}_i \phi(\mathbf{x}_1, \dots, \mathbf{x}_i) = 1,$$

we'll quantify over \mathbf{x}_1 to \mathbf{x}_{i-1} and let $\psi(\mathbf{x}_i) = \phi(\mathbf{x}_1, \dots, \mathbf{x}_i)$ be the remaining formula. We'll then use a GOOD string a_n and determine if $M(\psi, a_n) = 1$.

How do we find a GOOD string? We guess it along with x_1 and in parallel to the

computation determing if ϕ is a YES instance, we'll check if a_n is GOOD.

Formal Proof

 Σ_{i+1}^P computation for ϕ :

- GUESS \mathbf{x}_1, a_n
- FORALL Verify a_n is GOOD Verify $\forall \mathbf{x}_2, \exists \mathbf{x}_3, \dots, \forall \mathbf{x}_{i-1}$ $M(\psi, a_n) = 1$ where $\psi(\cdot) = \phi(\mathbf{x}_1, \dots, \mathbf{x}_{i-1})$.

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

©Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Non-uniform complexity

Why would it be easier to show NP $\not\subseteq$ P/ $_{poly}$ than to show NP \neq P.

- Circuit lower bounds more combinatorial.
- Can show circuit lower bounds by counting.
- Other sophisticated techniques available.
- Unfortunately: No explicit functions (in NP) with superlinear lower bound.
- Better lower bounds exist for high complexity; but based on diagonalization.