Today

e Polynomial Hierarchy
e Complete Problems
e PH Non-collapse Hypothesis

e Application: Non-uniform Complexity.
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PH: Simple properties

o I = {L|L € ©F}.

o I, C X CIIY,.

e PH = U,;> 117,

e As in assertion “TQBF is complete for
PSPACE", can postpone all computations
to the end; and can assume final
computation simply verifies if a 3-CNF

formula is satisfied.

e 37 Complete problem:

i-QBF = {¢|3x1Vx2 ... d(x1, ... ,Xx;) = true}.
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Polynomial Hierarchy

Recall definitions

P o .
e > = Languages accepted by polynomial
time bounded ATM starting in existential
state with ¢ alternating quantifiers.

e 117 = Languages accepted by polynomial

time bounded ATM starting in universal
state with ¢ alternating quantifiers.

e PH = U;> 127
e Convention: ¥} =TI}) = P.

e PH “discovered” by Meyer & Stockmeyer.
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P
o X' =NP;xE, = NP> .
e Acxl, & dBellf,c<oosit.

z € As Ty yl < |zl (z,y) € B.

Madhu Sudan, : 4



A non-trivial theorem Why PH interests us

Theorem[Umans '2000]: MINDNF is »2- e Good question. Should ask about every

complete. (complexity) class.

Conjectured since the discovery of PH. e Motivation 1: MINDNF'. But why consider
the entire infinite hierarchy.

e Motivation 2:

— Tests our ability to work with alternation.

— We know a lot about quantifiers, but
don't know how to eliminate even one
quantifier!

— Belief: Can not remove quantifiers!

— A stronger belief than NP # P NP #
co-NP etc.

— Many complexity theoretic assertions can
be proved under this belief.
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PH non-collapse hypothesis Collapse of the PH

Jargon: Hierarchy “collapses” if ¥ = TI7. Proposition: For i < 7,

o . . =1l =xF =107 =xF =1}.
Hypothesis: Hierarchy does not “collapse”,

i.e., For every i, EZP =+ HZP. Proof:

Why “collapse”? Next proposition explains. e By induction on j. True for j = i. Let
J >4 and assume true for j — 1.

o Let A € EJI-) and let B € I—IJP_1 s.t.
z€As Jyst. (z,y) € B.

e By induction B € ¥ and so 9C € 117 |
st. (z,y) € B& 3z st (z,y,2) € C.

e Soz € Aiff dy,z s.t. (z,y,2) € C. Thus
Aexl.
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PH non-collapse hypothesis

Why do we like it?

e Can't prove it false!
e It implies many other things we believe.

e Examples:

— NP has randomized polynomial time
algorithms implies hierarchy collapses.

— NP has sparse complete language implies
hierarchy collapses.

e Today's example: NP has small circuits
implies hierarchy collapses.
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— Equivalently: design a family of
“circuits”, one for each n and study
circuit size as function of n.

— To meaningfully study questions such as
“Is NP=P7?", restrict circuit size to be
polynomial in n.
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Circuit complexity/Non-uniform
computation

e Does solving a problem become much easier
if we only have to design an algorithm to
work for one fixed n at a time?

e Certainly, if the language is unary!
e But not necessarily if languages are binary!

e How do we measure running time in this
case?

— Design a family of “algorithms”: one for
each n and study runtime as function of
n.
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Boolean circuits

e Circuit is a DAG (directed acyclic graph).

e Node categories:

— Input gates: Distinct labels 1 to n.
— Output gates: Distinct labels 1 to m.
— Computation gates: AND, OR, NOT.

e Wires: Run between gates.

— Input gates have no wires coming in.

— Computation gates have one (if NOT),
or two (if OR/AND), wires coming in.

— Output gates have no wires going out.

e Size = # of gates. (Sometimes allow
unbounded fan-in OR/AND gates: in such
case size = # wires.)
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e Circuit computes a function f : {0,1}" —
{0,1}™.

e Qur interest: E.g. smallest circuit deciding
SAT (m = 1).
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Can think of a, as describing circuit, and
M (z,a) computes value of circuit a on input
x. Conversely, given any advice a and poly-
time TM M, can build poly-sized circuit that
determines value of M on input x and advice
a. Thus P/yly is the class of languages with
polynomial sized circuit family.
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Turing machines with advice

e Alternate interpretation of non-uniform
computation: Give “advice” to a Turing
machine.

e Fix a polynomial p. Let ay,as,... with
an € {0,1}*™ be advice strings. Given
z € {0,1}", an advice Turing machine M
uses the advice a,, to determine if x € L or
not.

Defn: L € P/poly if there exists a polynomial
time bounded Turing machine M, polynomial
p and advice strings ai,...,Qp,... with
lan| < p(n) such that for every z € {0,1}*,

re€Ll & M(z,a,)=1.
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Circuit complexity

e Given Boolean function family {f.}, with
fn : {0,1}™ — {0,1} show lower bounds
on smallest circuit computing f,.

e Hope: Can show NP # P by showing NP &
P /poly-

e Wait - what?
® P/po1y includes undecidable languages!

e Why should it not just contain NP, if it is
so powerful!

e Karp-Lipton: Non-uniformity is not too
powerful in deciding uniform languages.
Specifically:
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Thm: If NP C P/,q1y then PH collapses.
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Proof of Lemma 1

Lemma 1: GOOD is in HQP.
Proof: a,, is GOOD, if

Vi, M(Y,a,) =1= Jast. (a)=1

M(3,a,) = 0= VB3 (8) = 0.

Equivalently:

Vi, BIa s.t. (M (¢,a,) =0)Vy(a)=1)
AM (¢, an) = 1) V9(B) = 0)).
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Karp-Lipton

Assume M is an advice TM deciding SAT.

Defn: a, is GOOD if M(¢,a,) decides
¢ €SAT?.

Karp-Lipton Lemmas:
Lemma 1: GOOD is in 1%
(Wonderful: we have shown NP is in PH!)

Lemma 2: If NP C P/,q1y and GOOD is in
Note: deliberately ignoring the fact that we
know GOQOD is very low. We don't need it to

collapse the hierarchy.
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Proof of Lemma 2

Lemma 2: If NP C P/,0y and GOOD is in
II7, then &7, = %2 ..

Proof:  Will show (i + 2)-QBF in X7 ;.
Assume for simplicity that 7 is odd.

Basic idea: Given formula ¢ where we wish
to decide if

Ix1Vxg ... 3Ix0(x1, ... ,%x;) =1,

we'll quantify over x; to x;-1 and let
Y(x;)) = ¢(x1,...,%;) be the remaining
formula. We'll then use a GOOD string a,
and determine if M (¢, a,) = 1.

How do we find a GOOD string? We
guess it along with x; and in parallel to the
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computation determing if ¢ is a YES instance, Formal Proof
we'll check if a,, is GOOD.

%1 computation for ¢:
e GUESS x4,a,

e FORALL Verify a,, is GOOD
Verify Vxo, dx3,... ,Vx; 1
M(¢,a,) = 1 where 9(-) =
¢(X1, . aXi—l)-
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Non-uniform complexity

Why would it be easier to show NP Z P /.1y
than to show NP # P.

e Circuit lower bounds more combinatorial.
e Can show circuit lower bounds by counting.
e Other sophisticated techniques available.

e Unfortunately: No explicit functions (in
NP) with superlinear lower bound.

e Better lower bounds exist for high
complexity; but based on diagonalization.
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