Today

e Fortnow'’s time/space lower bound on SAT.

e Randomized Computation.

Madhu Sudan, : 1

Fortnow’s theorem

For today, will use LIN to mean the class of
computations in NEARLY-LINEAR TIME:

LIN =U.TIME(n(logn)").

e Belief: SAT ¢ L.

e Belief: SAT ¢ LIN.

e Can't prove any of the above.

e Fortnow’s theorem: Both can not be false!

Madhu Sudan, : 3

Power of Alternation

e Basic notion.
e Captures Time/Space differently.

e Next application shows how powerful it is.

Madhu Sudan, : 2

Formal theorem + Proof

Theorem: [Fortnow '97] If SAT € L, then
Je > 0 s.t. SAT ¢ Time(n!™c).

Proof: Assume SAT € L, and SAT € Ncso
Time(n!te).

Then ... will get contradication (after few
slides).

Madhu Sudan, : 4

Proof Idea

1. SAT in Time(n!'t), implies non-
determinism is not very powerful, & so
alternation is not very powerful.

2. SAT is complete for NTIME(n) implies SAT
is very powerful.

3. SAT in L implies small space computation
is very powerful.

4. Savitch's theorem implies alternation is
powerful in small space ccomputation, and
hence very powerful for all computation.

5. Contradiction to (1)!

Madhu Sudan, : 5

Fortnow: Step 1

Fact 1: If SAT € L, then TIME(T'(n)) C
SPACEc - log T'(n)

Proof: Padding + completeness of SAT under
Logspace reductions.

Madhu Sudan, : 7

How to formalize all this? Use (Time)
Hierarchy theorem.

Madhu Sudan, : 6

Fortnow: Step 2

Fact 2: SPACE(s) C ATIME[i,i2%/%s].
Proof:

e Draw depth ¢ tree of width w having 2°
leaves.

o At top level, Guess w intermediate
configurations c¢q,...,c, and for all
successive pairs c;j,c;j4+1 verify reach from
cj to ¢jy1 in w'! steps.

Corollary: (with TIME(T') C ATIME[i, (T))/7).

Madhu Sudan, : 8

Fortnow: Step 3

Fact 3: Ifsay, SAT € TIME(n'"c), then
ATIME[a,t] C TIMEt(1+9”,

Proof:

e Induction on # alternations.

e Use strong form of Cook's theorem at every
step.

e Take care to make sure numbers work out.

Madhu Sudan, : 9

Randomized computation

e Physicists’ Belief: Natural phenomena have
randomness built into them.

e How does this affect our belief that
“polynomial time" is all that is feasible?

e Should study formally.

Madhu Sudan, : 11

Contradiction?

Have

Time(T(n) = 22"

C (logT)
C ATimeli, T¢/7] ‘
C Time(T(e/D(1+9™).

Contradicts if (c/i)(1+ ¢€)?* < 1. Can be
arranged by picking i = 10c and € = 1/(23).

Madhu Sudan, : 10

Randomized algorithms/Turing machines

e Model 1: Machine can enter a random
state whenever it wishes. Takes one of two
outgoing transitions randomly.

e (Equivalent) Model 2: Machine has two
inputs: (1) The actual input and (2) the
outcome of many independent random coin
tosses.

Madhu Sudan, : 12

Randomized machines and languages

Machine M for Language L has:

Completeness c if ¢ = inf ¢, Pry[M (z, y)accepts

(Assume uniform distribution on £(|z|) bit
strings.

Soundness s if s = sup, 4, Pr,[M(z,y)accepts].

M seems to decide membership in L if ¢ > s.
But even better if c =1 (and/or s = 0).

Madhu Sudan, : 13

Time-bounded randomization

e BPP: (Bounded Probability Polynomial-
time): Both kinds of errors allowed (two-
sided error): L € BPP if there exists a
two-input deterministic machine M running
in time poly in first input such that:

z € L & Pr[M (z,y)accepts] > 2/3.
y

(Completeness = 2/3; Soundness = 1/3).

e RP: (Randomized Polynomial-time): Only
false negatives (one-sided error):

x € L = Pr[M(z,y)accepts] > 2/3.
y

(Completeness = 2/3; Soundness = 0
(perfect)).

Madhu Sudan, : 15

Complexity Classes

e Resource? Space or Time?

e What kind of error? Two attributes; Four
classes.

— “False positives”: Says z € L while x &
L. (Soundness > 0.)

— "“False negatives”: Says x ¢ L when
xz € L. (Completeness < 1.)

e All in all, get eight classes!

Madhu Sudan, : 14

Time-bounded randomization (contd.)

e co-RP: complements of RP languages.

e /PP: Error happens with probabillity zero!
So what does randomness do? Running
time is not guaranteed to be polynomial.
Only expected to be polytime.

Madhu Sudan, : 16

Space-bounded randomization Looking ahead

imil llecti f fi | :
Similar collection of four classes e 2/3, 1/3 arbitrarily chosen. For definition

of BPP suffices to have ¢ > s. Similarly for

* BPL, RL, co-RL, ZPL. RP, suffices to have ¢ > 0 etc.

e Catch 1: In two-input model, have one way

) e Randomness more powerful than deterministic?
access to second input.

— Belief: No.
e Catch 2: Machines bounded to run in — Current evidence: Yes. There exist
polynomial time. problems in RP that we can show to

be in P. (Example: Primality testing.)
There exist problems in RL that we can’t
show to be in L. (Example: USTCON -

connectivity in undirected graphs.)

Madhu Sudan, : 17 Madhu Sudan, : 18

Looking further ahead

e How do RP, BPP etc. relate to familiar
complexity classes.

e Obviously: ZPP in RP & co-RP; and all
are in BPP.

e RP in NP (by definition).

e BPP? Don't quite know:

— BPP in P/pqy.
— BPP in PH.

Madhu Sudan, : 19

