Today

e Fortnow'’s time/space lower bound on SAT.

e Randomized Computation.
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Fortnow’s theorem

For today, will use LIN to mean the class of
computations in NEARLY-LINEAR TIME:

LIN =U.TIME(n(logn)").

e Belief: SAT ¢ L.

e Belief: SAT ¢ LIN.

e Can't prove any of the above.

e Fortnow’s theorem: Both can not be false!
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Power of Alternation

e Basic notion.
e Captures Time/Space differently.

e Next application shows how powerful it is.
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Formal theorem + Proof

Theorem: [Fortnow '97] If SAT € L, then
Je > 0 s.t. SAT ¢ Time(n!™c).

Proof: Assume SAT € L, and SAT € Ncso
Time(n!te).

Then ... will get contradication (after few
slides).
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Proof Idea

1. SAT in Time(n!'t), implies non-
determinism is not very powerful, & so
alternation is not very powerful.

2. SAT is complete for NTIME(n) implies SAT
is very powerful.

3. SAT in L implies small space computation
is very powerful.

4. Savitch's theorem implies alternation is
powerful in small space ccomputation, and
hence very powerful for all computation.

5. Contradiction to (1)!
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Fortnow: Step 1

Fact 1: If SAT € L, then TIME(T'(n)) C
SPACEc - log T'(n)

Proof: Padding + completeness of SAT under
Logspace reductions.
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How to formalize all this? Use (Time)
Hierarchy theorem.
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Fortnow: Step 2

Fact 2: SPACE(s) C ATIME[i,i2%/%s].
Proof:

e Draw depth ¢ tree of width w having 2°
leaves.

o At top level, Guess w intermediate
configurations c¢q,...,c, and for all
successive pairs c;j,c;j4+1 verify reach from
cj to ¢jy1 in w'! steps.

Corollary: (with TIME(T') C ATIME[i, (T))/7).
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Fortnow: Step 3

Fact 3: Ifsay, SAT € TIME(n'"c), then
ATIME[a,t] C TIMEt(1+9”,

Proof:

e Induction on # alternations.

e Use strong form of Cook's theorem at every
step.

e Take care to make sure numbers work out.
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Randomized computation

e Physicists’ Belief: Natural phenomena have
randomness built into them.

e How does this affect our belief that
“polynomial time" is all that is feasible?

e Should study formally.
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Contradiction?

Have

Time(T(n) = 22"

C (logT)
C ATimeli, T¢/7] ‘
C Time(T(e/D(1+9™).

Contradicts if (c/i)(1+ ¢€)?* < 1. Can be
arranged by picking i = 10c and € = 1/(23).
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Randomized algorithms/Turing machines

e Model 1: Machine can enter a random
state whenever it wishes. Takes one of two
outgoing transitions randomly.

e (Equivalent) Model 2: Machine has two
inputs: (1) The actual input and (2) the
outcome of many independent random coin
tosses.
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Randomized machines and languages

Machine M for Language L has:

Completeness c if ¢ = inf ¢, Pry[M (z, y)accepts

(Assume uniform distribution on £(|z|) bit
strings.

Soundness s if s = sup, 4, Pr,[M(z,y)accepts].

M seems to decide membership in L if ¢ > s.
But even better if c =1 (and/or s = 0).
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Time-bounded randomization

e BPP: (Bounded Probability Polynomial-
time): Both kinds of errors allowed (two-
sided error): L € BPP if there exists a
two-input deterministic machine M running
in time poly in first input such that:

z € L & Pr[M (z,y)accepts] > 2/3.
y

(Completeness = 2/3; Soundness = 1/3).

e RP: (Randomized Polynomial-time): Only
false negatives (one-sided error):

x € L = Pr[M(z,y)accepts] > 2/3.
y

(Completeness = 2/3; Soundness = 0
(perfect)).
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Complexity Classes

e Resource? Space or Time?

e What kind of error? Two attributes; Four
classes.

— “False positives”: Says z € L while x &
L. (Soundness > 0.)

— "“False negatives”: Says x ¢ L when
xz € L. (Completeness < 1.)

e All in all, get eight classes!
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Time-bounded randomization (contd.)

e co-RP: complements of RP languages.

e /PP: Error happens with probabillity zero!
So what does randomness do? Running
time is not guaranteed to be polynomial.
Only expected to be polytime.
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Space-bounded randomization Looking ahead

imil llecti f fi | :
Similar collection of four classes e 2/3, 1/3 arbitrarily chosen. For definition

of BPP suffices to have ¢ > s. Similarly for

* BPL, RL, co-RL, ZPL. RP, suffices to have ¢ > 0 etc.

e Catch 1: In two-input model, have one way

) e Randomness more powerful than deterministic?
access to second input.

— Belief: No.
e Catch 2: Machines bounded to run in — Current evidence: Yes. There exist
polynomial time. problems in RP that we can show to

be in P. (Example: Primality testing.)
There exist problems in RL that we can’t
show to be in L. (Example: USTCON -

connectivity in undirected graphs.)
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Looking further ahead

e How do RP, BPP etc. relate to familiar
complexity classes.

e Obviously: ZPP in RP & co-RP; and all
are in BPP.

e RP in NP (by definition).

e BPP? Don't quite know:

— BPP in P/pqy.
— BPP in PH.
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