Today

e BPP in PH.

e Circuit complexity and lower bounds.
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Today: BPP in PH

Note: Not quite trivial. How to have a
bounded round interaction to convince x € L?

Consider following game: Y & Z are all
powerful players. Y wants to convince you
(the audience) that z € L and Z claims
otherwise. If L € X5, then Y should be
able to say something, call it y, such that
if © ¢ L, Z can respond with a z such the
audience can see that Z was right. On the
other hand if x € L, then no matter what Z
says, audience is not convinced.

What should Y and Z try to do? What should
the audience do?
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Last lecture

e Amplification of RP and BPP.

e RP, BPP C P/poly.
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Main ldea

Draw picture here.
Let M be the BPP machine recognizing L.

Most strings w are good (M(x,w) = accept);
or very few are good. How to convince you?

Idea 1: Y divides space into two equal parts
with all bad strings in one part and a bijection
7 between the two parts. Y claims every string
or its map under bijection is good! If Z wants,
it can challenge!

If Z finds a string w where neither M (z,w)
nor M (z,m(w)) accept - he wins.

Else Y wins.

Seems convincing. Y can win if bad set is
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smaller than 1/2. Y can't win if bad set more
than 1/2.

Problem: How do Y give the bijection?

Bijections have to simple: So we'll stick 7, :
W= wopr.

In this space of bijections the proof doesn't go
through. But the idea is starting to emanate.
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Proof of theorem
IfxinlL

PrM(z,wer)>1-2"">1/2.

Pr [3i € 2m] s.t. M(z,w®r;)] > 1-272™,

T15---5T2m

Pr [Vw € {0,1}™,3i € [2m] s.t. M(z,wdr;)

T1y---3T2m

Yields first part.
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Debate for membership in BPP

Theorem: If x in L there exist r1,... ,7r9,, €
{0,1}™ such that the w’s are covered; i.e.,
for every w there exists an i € [2m] such that
M (z,m,,(w)) accepts.

If x not in L, then for any r,...,7r9,, €
{0,1}™ there is an uncovered w.

Assuming theorem: Debate: Y announces
r1,.-- ,T2m. Deniss challenges with a w. You
compute M (z,wBri)V---VM(z,wBrey).
If true, Y wins (z € L) else Z wins (x & L) -
you decide!
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Proof of theorem (second part)

x not in L. Say | pick best possible 1,... , 7o,
below.

Pr[M(z,w @ r;)] < 1/100m.
Pr[3i € [2m] s.t. M(z,w & r;)] < 1/50.

w

QED!
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Power of the prover Current issues in randomness

If Y is right - it just needs to pick r1,... ,rom

e Reducing randomness
at random!

— Algorithm specific: Limited independence,
Epsilon-bias.
— Generically, during amplification: “Recycling”.

If Z is right, he just needs to pick w at
random.

So we just need randomness to simulate o
e Using imperfect randomness: Extractors.

randomness!
Hmm.... that didn't sound so impressive - | e Derandomization: Pseudorandomness,
should have said ... hardness versus randomness.

So we just need one-sided randomness to
simulate two-sided randomness!
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Next topic Big goal

e Circuit lower bounds e Would like to show exponential lower
bounds on circuit size for functions in NP.
e Parity does not have constant depth circuits
e Best we've been able to show is exponential
lower bounds on constant depth circuits.

e References:

— Furst, Saxe, Sipser '83.
— Yao '85.

— Hastad '87.

— Smolensky '88.

e Today: Smolensky's proof.
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Circuit depth

e Depth of a circuit is the length of the
longest path from input to output.

e Today we consider ACy: the class of
circuits with unbounded fan-in OR, and
AND gates, and constant depth.

e Depth represents parallel time. Unbounded
fan-in represents concurrent writing on
shared memory cells.

e “Lowest level of complexity”.
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Main tools

e Vector spaces over Z3.
e Polynomials over Z5.

e Randomness.
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Parity function

Foreveryn, @,, : {0,1}" — {0, 1} represents
the parity of n bits (or sum modulo two).

Goal for today:

Theorem: If €, has a circuit of depth d then
it must have size 27"
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Parity and polynomials

e 73 = {—1,0,+1} (Arithmetic mod 3, but
think of 2 as —1.)

e Two representations of the Boolean world:
{0,1} and {+1,—1}. (0> 1; 1 ¢+ —1.)

ez—1—2zxand (1—-y)/2 +y.
e Then @, : (z1,-.. ,2n) — [[1, 2.
e In general think of f : {0,1}" — {0,1} and

f o {+1,-1}" — {+1, -1} as functions
mapping 75 — Zs.
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Polynomials over Zj3

Fact: For every f : {0,1}" — {0,1}, can
find polynomial q : Z5 — Z3 such that g has
degree 1 in each variable and agrees with f
on {0,1}"™.

Similar fact for f: {-1,1}" — {—1,1}.
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Using lemmas to prove theorem

e Assume parity has depth d, size s circuit.

e By Lemma 1, parity is computed by
polynomial of degree (logs)?@ on set S
of size 3/42™.

e By Lemma 2, every Boolean function on S
is a polynomial of degree n/2+ (log 5)°(4).
Thus this set of functions is contained

in a vector space over( )Z3 of dimension
o(d

at most Z?:/g-"(logs) (’:) < on—l 4

(logs)0D2on/\/n < 3/42".  (Provided

s <on™)

e By Lemma 3, this space of functions has
dimension at least |S| > 3/42™.
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Main Lemmas

Lemma 1: If f:{0,1}"™ — {0,1} is computed
by a depth d circuit of size s, then there
exists a set S C {0,1}" of size |S| > 3/42"
such that f : S — {0,1} computed by a
polynomial over Zs of degree (log s)°(%).

Lemma 2: If there exists a degree polynomial
D p : 7% — Zs such that p(z) = P(z)
for all x € S, then every Boolean function
f:8S — {0,1} is computed by polynomials
of degree n/2 + D.

Lemma 3: Any set of functions generating
all f:S — {0,1} must have at least |5]|
members.
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e We have a contradiction
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Proof of Lemma 3 Proof of Lemma 2

e Will switch back and forth between 0/1

o letd,(y) =1ifx =y and 0 o.w..
) Y and +1.

e The functions {§, : S — {0,1}|z € S},

are linearly independent. e Suppose @ : S — {0,1} is represented

by a polynomial ¢ : R* — R. Let
T C {+1,—1}™ be the associated set.
Then [ zi = 1-2¢((1—21)/2,...,(1-
Z,)/2) on the set T

e Simple linear algebra.

e Consider Boolean function f: S — {0, 1}.
Let ¢ : T — {+1,—1} be associated
function. Represent g by a polynomial in
its arguments. p(x) = >, ;i Ai+ ), BiB;
where A; are terms of degree less than n /2
and B;'s are terms of degree greater than

n/2 Let Cj = H?:l LE‘l/BJ Then pI(X) =
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> i+ q(x) >, B;C; also represents g Proof of Lemma 1
and is a polynomial of degree at most
n/2+ D.

_ e This is the hard lemma. (Though the linear
e The polynomial r(x) = (1 + p(1 — 2x))/2 algebra is also very novel.)
represents f.

e But is seen again and again in complexity.

e Basic idea: Fix input z,...,x, and
randomly replace every gate by a
polynomial of low-degree. Show the

resulting circuit still computes the original
value with probability at least 3/4.

e Use the probabilistic method to conclude
there exists a collection of polynomials
which computes the original function on
3/4ths of the input.
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Prob. polynomial for the OR function

Naive answer:  OR(y1,...,yr) = 1 —
Hi;l(l — y;). Answer is always right. But
degree is k - too much.

Step 1: Get the answer right w.p. 1/2 with
polynomials of degree 2.

Basic idea: pick aq,... ,a; € Z3 at random.
pa(Y) = Zizl a;Y;-

Claim 1: p,(0) = 0.

Claim 2: Pru[pa(y) =0] < 1/3.

Proof: Let Q(z) = Zle yizi. @ is a non-
zero polynomial of degree 1 in its argument.
Evaluation at random z = a leaves it non-
zero.
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Prob. polynomial for circuit

e Replace every gate by degree 2/ poly
randomly.

e Resulting circuit computes a polynomial of
degree (2¢)%.

e Prob. it gets the output wrong (for fixed
input) is at most s(1/3)¢.

e Lemma follows.
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Prob. polynomial for the OR function
(contd.)

The polynomial p2 is always 0 or 1 and
computes the OR function on any fixed input
w.p. 2/3.

Pick ai,...,a;, and take the OR of
polynomials p,,.

Gives degree 2/ polynomial that is right w.p.
1—(2/3)~

What we gained? Will pick £ = log s to make
degrees logarithmically smaller than fan-in.

What we lost? Not guaranteed to be right.
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Conclusions

e Algebra, arithmetization, randomness very
powerful tools.

e Work in situations where there's no
mention of them in problem statement.

e Many more examples in course.

e Unfortunately, know little else?
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