Today

- Hardness of Uniquely satisfiable instances of SAT.
- Counting problems: P^{#P}.

Unique satisfiability

Motivation: Hard functions in cryptography.

Diffie-Hellman motivation for cryptography:

The map $(\phi, \mathbf{a}) \mapsto \phi$, where \mathbf{a} satisfies ϕ is easy to compute but hard to invert.

So maybe similarly the map $(p,q) \mapsto p \cdot q$ is also easy to compute but hard to invert.

Can now start building cryptographic primitives based on this assumption.

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

©Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Issues

Many leaps of faith:

- Specific problem has changed.
- The inputs have to be generated randomly.
- They have to have known "satisfiability".
- etc. etc.

Initial big worry: The map $(\phi, \mathbf{a}) \mapsto \phi$ loses information, while $(p, q) \mapsto p \cdot q$ does not. And NP-hardness requires "loss of information".

Worry goes away, if we know ϕ has only one satisfying assignment. But then is problem as hard?

Formalizing the problem

Promise Problems: Generalize languages L. $\Pi=(\Pi_{YES},\Pi_{NO}),\ \Pi_{YES},\Pi_{NO}\subseteq\{0,1\}^*,\ \Pi_{YES}\cap\Pi_{NO}=\emptyset.$

Algorithm A solves problem Π , if:

(Completeness): $x \in \Pi_{YES} \Rightarrow A(x)$ accepts.

(Soundness): $x \in \Pi_{NO} \Rightarrow A(x)$ rejects.

(Can extend to probabilistic algorithms naturally.)

 $\begin{array}{l} \text{Unique SAT: USAT} = (\mathrm{USAT_{YES}}, \mathrm{USAT_{NO}}): \end{array}$

 $\Pi_{\rm YES} = \{\phi | \phi \ \ {\rm has} \ \ {\rm exactly} \ \ {\rm one} \ \ {\rm sat.} \ \ {\rm assgmnt.} \}.$

 $\Pi_{\mathrm{NO}} = \{\phi | \phi \text{ has no sat. assgmnts.} \}.$

Formal question: Is $USAT \in P$? (Does there

exist a polytime algorithm A solving USAT)?

Valiant-Vazirani theorem

Theorem: $USAT \in P$ implies NP = RP.

Proved via the following lemma.

Lemma: There exists a randomized reduction from SAT to USAT.

 $\phi \mapsto \psi$ such that $\phi \notin SAT$ implies $\psi \in USAT_{NO}$. $\phi \in SAT$ implies $\psi \in USAT_{YES}$ with probability 1/poly(n).

Again: Question stated without randomness, but answer mentions it! (Can also mention answer without randomness: NP \subseteq P/ $_{poly}$ or PH collapses etc.)

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Proof Idea

 ψ will have as its clauses, all clauses of ϕ and some more. $(\psi(x) = \phi(x) \wedge \rho(x).)$

So hopefully, will reduce # sat. assgnmts to one.

Furthermore, can put any polynomial time decidable constraint $\rho(x)$ (Since every computation can be transformed into SAT. Exercise coming up.)

So what is $\rho(x)$ going to be?

Proof Idea

Suppose we know there exist M sat. assgnmts to ϕ .

Will pick a random function $h: \{0,1\}^n \rightarrow \{0,\ldots,M-1\}.$

Hopefully this distinguished satisfying assignments, and we can let $\rho(x)$ be the condition h(x) = 0.

Calculations imply this works out with constant probability.

Caveats in the solution

- How to do this reduction in polytime? Not enough time to represent h!
- Don't know M!

Amendments:

- Will pick pairwise independent hash function.
- \bullet Will guess M approximately (to within a factor of 2).

Things will work out!

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Randomized reduction from SAT to **USAT**

Given ϕ :

- ullet Pick $m \in \{2, \ldots, n+1\}$ at random (and hope that # satisfying assignments is between 2^{m-2} and 2^{m-1} .)
- Pick h at random from nice p.w.i. family Η.
- Let $\psi(x) = \phi(x) \wedge (h(x) = 0)$.
- Output ψ .

Pairwise independent hash families

Defn: $H \subseteq \{f : \{0,1\}^n \to \{0,1\}^m\}$ is pairwise independent family if for all $\mathbf{a} \neq$ $b \in \{0,1\}^n \text{ and } c, d \in \{0,1\}^m$

$$\Pr_{h \in H}[h(\mathbf{a}) = \mathbf{c} \text{ AND } h(\mathbf{b}) = \mathbf{d}] = (1/2^m)^2.$$

H is nice if $h \in H$ can be efficiently sampled and efficiently computed.

Example: Pick $A \in \{0,1\}^{m \times n}$ and $b \in$ $\{0,1\}^m$ at random. Let $h_{A,b}(x) = Ax + b$. Then $H = \{h_{A,b}\}_{A,b}$ is a nice, pairwise independent family.

Proof: Exercise.

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Analysis

Let
$$S = \{x | \phi(x)\}.$$

Hope:
$$2^{m-2} < |S| < 2^{m-1}$$
.

Claim: $Pr_m[$ Hope is realized $] \ge 1/n$.

Proof: Claim is true for some $m \in \{2, \ldots, n+1\}$ 1). Prob. we pick that m is 1/n.

Analysis (contd.)

Claim: $\Pr_h[$ Exactly one $x \in S$ maps to 0 — Hope $] \ge 1/8$.

Define G_x : Event that x maps to 0 and no other $y \in S$ maps to 0.

Prob. we wish to lower bound is (conditioned on Hope):

$$\Pr_h[\cup_{x\in S}G_x] = \sum_x \Pr_h[G_x]$$

(since G_x 's are mutually exclusive).

$$\Pr_h[h(x) = 0] = 1/2^m.$$

$$\Pr_h[h(x) = 0 \text{ and } h(y) = 0] = 1/4^m.$$

$$\Pr_h[h(x) = 0 \text{ and } \exists y \in S - \{x\}, s.t.h(y) = 0] \leq |S|/4^m.$$

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

 $\Pr_h[G_x] > 1/2^m - |S|/4^m$.

 $\Pr_h[\cup_x G_x] \ge |S|/2^m(1-|S|/2^m) \ge 1/8.$

©Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Concluding the analysis

With probability 1/8n reduction produces ψ with exactly one satisfying assignment. If you can decide satisfiability in such cases then can decide satisfiability probabilistically in all cases.

New topic: Counting classes

Given NP machine, how many accepting paths does it have?

P is class of functions $f: \{0,1\} * \to \mathbb{Z}^{\geq 0}$ such that there exists a machine $M(\cdot,\cdot)$ running in polytime in first input such that for every $x, f(x) = \{y | M(x,y)\}.$

 $P^{\#P}$ is class of languages decidable with oracle access to #P functions.

Very important class: Has usual complete functions #SAT, # Hamiltonian cycles, and also # cycles in digraph.

Most novel: # matchings in bipartite graph; also permanent of non-negative matrix.

How powerful is $P^{\#P}$?

- $P^{\#P} \subset PSPACE$.
- BPP $\subset P^{\#P}$.
- NP $\subset P^{\#P}$.
- $co-NP \subseteq P^{\#P}$.

What about Σ_2^P ? Open till Toda's theorem.

Thm [Toda]: $PH \subset P^{\#P}$.

No known reasons to believe $P^{\#P}$ PSPACE. (Can you prove anything?)

Proof of Toda's Theorem

Main ingredients:

- Operators on complexity classes.
- Closure properties.
- Randomness
- Algebra
- Blah Blah Blah

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Operators on complexity classes

An "operator" maps a complexity class into a related one.

A short list: \exists , \forall , BP, \bigoplus .

 $\mathcal{C} \mapsto \mathcal{O} \cdot \mathcal{C}$.

 $\cdot \mathcal{C}$ is simple: complements of languages in \mathcal{C} .

In all other cases, think of machines in $\mathcal C$ as two input machines and operator shows how to quantify over second input.

- ∃, does there exist second input?
- ∀, for every second input.
- \bigoplus : for odd # of second inputs,

 \bullet BP, for at least c(n) fraction of second input if $x \in L$ versus at most s(n) if $x \notin L$, where c(n) - s(n) > 1/poly(n).

(Sample) definition:

 $L \in \bigoplus \mathcal{C}$ if there exists a machine $M(\cdot, \cdot) \in$ \mathcal{C} (whose second input should be polynomiallength in the first input) such that $w \in L \Leftrightarrow$ $|\{x|M(w,x)\}|$ is odd.

Example operations:

- $\bullet \exists \cdot P = NP.$
- $\forall \cdot P = \text{co-NP}$.
- $\begin{array}{l} \bullet \ \exists \cdot \Sigma_3^P = \Sigma_3^P. \\ \bullet \ \forall \cdot \Sigma_3^P = \Pi_4^P. \end{array}$
- $BP \cdot P = BPP$.

Toda's theorem steps

Toda's theorem (contd.)

1. $\Sigma_i^P \subseteq \operatorname{BP} \cdot \bigoplus \cdot \Pi_{k-1}^P$. $\Pi^P \subseteq \operatorname{BP} \cdot \bigoplus \cdot \Pi_{k-1}^P$. (Extends Valiant-Vazirani.)

2. $BP \cdot \bigoplus \cdot P$ amplifies error. (Subtle.)

- 3. $\bigoplus \cdot \operatorname{BP} \cdot \bigoplus \cdot \operatorname{P} \subseteq \operatorname{BP} \cdot \bigoplus \cdot \operatorname{P} \subseteq \operatorname{BP} \cdot \bigoplus \cdot \operatorname{P}$. (Surprising, but straightforward.)
- 4. $BP \cdot BP \cdot \bigoplus \cdot P \subseteq BP \cdot \bigoplus \cdot P$. (Not surprising. Straightforward.)

After all the above:

Theorem: $PH \subseteq BP \cdot \bigoplus \cdot P$.

Completely separate theorem:

Theorem: $BP \cdot \bigoplus \cdot P \subseteq P^{\#P}$.

Details tomorrow.