Today

e Hardness of Uniquely satisfiable instances
of SAT.

e Counting problems: p#P.
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Issues

Many leaps of faith:

e Specific problem has changed.
e The inputs have to be generated randomly.
e They have to have known “satisfiability”.

e ectc. etc.

Initial big worry: The map (¢,a) — ¢ loses
information, while (p, ¢) — p-q does not. And
NP-hardness requires “loss of information”.

Worry goes away, if we know ¢ has only one
satisfying assignment. But then is problem as
hard?
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Unique satisfiability

Motivation: Hard functions in cryptography.
Diffie-Hellman motivation for cryptography:

The map (¢,a) — ¢, where a satisfies ¢ is
easy to compute but hard to invert.

So maybe similarly the map (p,q) — p-q is
also easy to compute but hard to invert.

Can now start building cryptographic
primitives based on this assumption.
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Formalizing the problem

Promise Problems: Generalize languages L.
II = (Iygs,no), Ilyes,IIno € {0,1},
Mygs NIIno = 0.

Algorithm A solves problem II, if:
(Completeness): z € Ilygs = A(z)
accepts.
(Soundness): z € IIxo = A(z) rejects.

(Can extend to probabilistic algorithms
naturally.)

Unique SAT: USAT = (USATYEs, USATNQ)Z
IIygs = {¢|¢ has exactly one sat.
assgmnt. }.
IIno = {¢p|¢ has no sat. assgmnts.}.

Formal question: Is USAT € P? (Does there
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exist a polytime algorithm A solving USAT)?
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Proof Idea

1 will have as its clauses, all clauses of ¢ and
some more. (¢Y(x) = ¢(z) A p(z).)

So hopefully, will reduce # sat. assgnmts to
one.

Furthermore, can put any polynomial time
decidable constraint p(z) (Since every
computation can be transformed into SAT.
Exercise coming up.)

So what is p(x) going to be?
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Valiant-Vazirani theorem

Theorem: USAT € P implies NP = RP.
Proved via the following lemma.

Lemma: There exists a randomized reduction
from SAT to USAT.

¢ — 1 such that ¢ € SAT implies ¢ €
USATyo. (b € SAT implies ¢ € USATvEs
with probability 1/poly(n).

Again: Question stated without randomness,
but answer mentions it! (Can also mention
answer without randomness: NP C P/, or
PH collapses etc.)
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Proof Idea

Suppose we know there exist M sat. assgnmts

to ¢.

Will pick a random function A : {0,1}" —
{0,...,M —1}.

Hopefully  this  distinguished satisfying
assignments, and we can let p(x) be the
condition h(x) = 0.

Calculations imply this works out with
constant probability.
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Caveats in the solution

e How to do this reduction in polytime? Not
enough time to represent h/!

e Don't know M!
Amendments:

e Will pick pairwise independent hash
function.

e Will guess M approximately (to within a
factor of 2).

Things will work out!
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Randomized reduction from SAT to
USAT

Given ¢:
e Pick m € {2,... ,n+ 1} at random (and
hope that # satisfying assignments is

between 2™~2 and 2™~1))

e Pick h at random from nice p.w.i. family
H.

o Let ¥(z) = ¢(x) A (h(z) = 0).

e Output .
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Pairwise independent hash families

Defn: H C {f : {0,1}" — {0,1}™} is
pairwise independent family if for all a #
b € {0,1}" and ¢,d € {0,1}™

P [h(a) = c AND h(b) =d] = (1/2™)%

H is nice if h € H can be efficiently sampled
and efficiently computed.

Example: Pick A € {0,1}"™*™ and b €
{0,1}™ at random. Let h4(z) = Az +b.
Then H = {hap}ap is a nice, pairwise
independent family.

Proof: Exercise.
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Analysis

Let S = {z|¢p(x)}.
Hope: 2m=2 < |S| < 2™~ L,
Claim: Pr,,[ Hope is realized | > 1/n.

Proof: Claim is true forsome m € {2,... ,n+
1}. Prob. we pick that m is 1/n.

Madhu Sudan, : 12



Analysis (contd.)

Claim: Pry[ Exactly one z € S maps to 0 —
Hope | > 1/8.

Define G,: Event that x maps to 0 and no
other y € § maps to 0.

Prob. we wish to lower bound is (conditioned
on Hope):

Prp[UzesGe] = >, Pra[Gy]

(since G's are mutually exclusive).
Prplh(z) = 0] =1/2™,

Prp[h(z) =0 and h(y) = 0] = 1/4™.

Prplh(z) = 0 and Jy € S — {z},s.t.h(y) =
0] < |S]/4™.
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Concluding the analysis

With probability 1/8n reduction produces
with exactly one satisfying assignment. If you
can decide satisfiability in such cases then
can decide satisfiability probabilistically in all
cases.
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Pry[Ge] > 1/2™ —[S]/4™.
Pry[U.Ge] > |5]/2™(1 - [5]/2™) > 1/8.
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New topic: Counting classes

Given NP machine, how many accepting paths
does it have?

#P is class of functions f : {0,1}x — Z=°
such that there exists a machine M(,-)
running in polytime in first input such that

for every z, f(x) = {y|M(z,y)}.

P#P is class of languages decidable with

oracle access to #P functions.

Very important class: Has usual complete
functions #SAT, # Hamiltonian cycles, and
also # cycles in digraph.

Most novel: # matchings in bipartite graph;
also permanent of non-negative matrix.
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How powerful is P#"?

o P*P C PSPACE.

o BPP C P#P.

e NP C P#P

o co-NP C P#P.

What about 5?7 Open till Toda's theorem.
Thm [Toda]: PH C P#F.

No known reasons to believe P#F =+
PSPACE. (Can you prove anything?)
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Operators on complexity classes

An “operator” maps a complexity class into a
related one.

A short list: , 3, V, BP, .
C—0O-C.
-C is simple: complements of languages in C.

In all other cases, think of machines in C as
two input machines and operator shows how
to quantify over second input.

e 7, does there exist second input?
e VY, for every second input.

o (P: for odd # of second inputs,
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Proof of Toda’s Theorem

Main ingredients:

e Operators on complexity classes.
e Closure properties.

e Randomness

o Algebra

e Blah Blah Blah
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e BP, for at least ¢(n) fraction of second
input if z € L versus at most s(n) if z &€ L,
where ¢(n) — s(n) > 1/poly(n).

(Sample) definition:

L € @ -C if there exists a machine M (-,-) €
C (whose second input should be polynomial-
length in the first input) such that w € L &
{z|M (w,z)}| is odd.

Example operations:

e 7-P = NP.

e V-P =co-NP.
e 3.2P =%l
QV-EP:Hf.
e BP-P = BPP.
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Toda’s theorem steps Toda’s theorem (contd.)

1. P CBP-@ 'HkP—l' Completely separate theorem:
¥ C BP- @ I ;. Theorem: BP - -P C p#P.

(Extends Valiant-Vazirani.)
Details tomorrow.

2. BP- @ -P amplifies error.
(Subtle.)

3. -BP-@®-PCBP- -P-PCBP-P-P.

(Surprising, but straightforward.)

4. BP-BP-@-PCBP--P.
(Not surprising. Straightforward.)

After all the above:

Theorem: PH C BP- @ -P.
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