Today Last time

- Arthur-Merlin Proofs and Interactive Proofs.
- Classes: IP, AM and MA.

- Saw an interactive proof (of chalk marks?).
- Extends to graph non-isomorphism, or any distinguishability property.
- Principal ingredients: interaction, randomness, secrecy.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Resources and Complexity Classes

- Some resources to focus on.
 - Rounds of interaction
 - Verifier's randomness: Public or private?
 - Error: one-sided vs. two-sided.
- Historically:
 - Public coins = Arthur-Merlin proofs
 - Private coins = interactive proofs.
- However ... Public coins = private coins (GMZ).
- Nowadays:
 - IP = class of all languages with polyround interactive proofs.

- AM = class of languages with bounded round Arthur-Merlin proofs (specifically Arthur goes first, and Merlin second ... no third round!).
- MA = class of languages in which Merlin goes first, and Arthur second (so only advantage over NP is that this includes BPP).

Agenda for today

- Power of prover (IP in PSPACE)
- Goldwasser-Sipser protocol for approximate counting.
- Private coins, two-sided error = Public coins, one sided error.
- Sketch of AM[k] = AM.
- Next lecture onwards: IP = PSPACE.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

$IP \subseteq PSPACE$

Simple consequence of the explicit form of the optimal prover:

Proposition: IP \subseteq PSPACE.

Proof: Can compute "probability of acceptance by optimal responses" in PSPACE.

The optimal prover

- Given a fixed verifier, what should a prover do?
- Can figure out what to do, optimally, by computing the following quantity:
- Given a history of interactions so far, what is the highest probability, over all provers, of the verifier accepting.
- Can compute this by induction on number of remaining rounds.
- Prover that does this is the optimal prover.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Round-preserving amplification

- Verifier can run ℓ iterations in parallel.
- Prover might as well be the ℓ-wise direct product of optimal prover.
- Completeness/Soundness of new protocol $= \ell$ th power of original protocol.

AM proof for approximate set size

Suppose $S\subseteq\{0,1\}^n$ has size either $|S|\ge \mathrm{BIG}=2^m$ or at most $SMALL=2^m/100$, where e.g., $m=\sqrt{n}$. Further $x\in S$? can be determined by Arthur on its own.

Can Merlin convince Arthur that S is BIG?

[Goldwasser-Sipser] give AM protocol for above.

Goldwasser-Sipser protocol

Protocol: (reminiscent of Sipser-Lautemann)

- Merlin picks (random) hash function $h: \{0,1\}^n \to \{0,1\}^{m-4}$. and sends to verifier.
- Arthur picks $y \in \{0,1\}^{m-4}$ at random and sends to Merlin.
- Merlin responds with $x \in S$ such that h(x) = y.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Goldwasser-Sipser protocol

Claim: If h is chosen from a nice p.w.i. family of hash functions, and $|S| \ge 2^m$, then for 2/3 of y's, there exists $x \in S$ such that h(x) = y.

Claim: If $|S| \leq 2^m/100$, then no matter which h we pick, at most $16/100 \leq 1/6$ for the y's have $x \in S$ such that h(x) = y.

$IP[k] \subseteq AM[k]$

Will only prove $IP[1] \subseteq AM[O(1)]$. Extension to general k similar.

- Fix verifier with completeness 2/3, and soundness 1/poly.
- ullet Let Q be set of possible questions.
- ullet For $q\in Q$, let S_q be set of random strings that lead to question q being asked, where optimal prover leads to acceptance.
- ullet Let r be length of random strings.
- So either $\sum_{q \in Q} |S_q| \ge (2/3)2^r$, $\sum_{q \in Q} |S_q| \le 1/\mathrm{poly}(r)$.

- ullet For simplicity assume $|S_q|=0$ or 2^l for every q.
- Will run two G-S protocols back to back.
- Will ask Merlin to prove #q such that $|S_q|=2^l$ is at least $(2/3)2^{r-l}$.
- ullet To do so, Merlin send h, Arthur queries with y and Merlin sends $q\in Q$ such that h(q)=y.
- Arthur still needs to verify $|S_q| \ge 2^l$. Does this with another G-S protocol.
- Working out details get theorem.

One-sided error?

Can get one-sided error protocols using more ideas from Lautemann-Sipser (BPP in PH). (Pick many hash functions; one of them always has a pre-image.)

Corollary: Can prove graph non-isomorphism without error or private coins! Can you come up with elementary protocol?

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

AM[k] = AM

Basic Idea:

- $AM[k] = BP \cdot \exists ... BP \cdot \exists \cdot P.$
- Can exchange ∃ · BP for BP ·∃ (as in Toda, Part 1, Step 2); and then collapse successive BP and ∃.

Conclusion

At most three differnt classes:

- MA: Merlin speaks first and Arthur verifies claim probabilistically.
- AM: Arthur asks question at random and Merlin answer questions and then Arthur verifies (deterministically).
- IP: Number of rounds of interaction unbounded.