Today

o #P C IP.

e Polynomial straightline programs and
interactive proofs.

e Straightline programs for PSPACE.

Madhu Sudan, : 1

— PSPACE is closed under complement.
Any reason to believe IP is?

Madhu Sudan, : 3

Recall #P, IP

e #P is the class of counting functions.
Prototypical example: #SAT - # of
satisfying assignments of a 3CNF formula.

e |P is the class of languages with interactive
proofs. So far know that IP contains NP
and GNI (graph nonisomorphism).

e Anything else?  Today will show #P
has interactive proofs. Also try showing
PSPACE has IP.

e Remarks:

— Need to use multiple rounds of
interaction (so not an “AM" proof
system.).

Madhu Sudan, : 2

Basic Idea

e Suppose Prover wishes to prove ¢ has A
satisfying assignments.

e Can use self-reducibility:

— Can prove ¢|,,—o has A assigments and
¢|z,=1 has A, assigments, and that A;+
A=A

— Unfortunately # statements to be proved
is growing exponentially.

— Any way to commit to #¢,,—o and
#¢.,=1 jointly and then prove only one
claim?

— How does #¢,,—. behave as a function
of « - naturally?

Madhu Sudan, : 4



Arithmetizing SAT #SAT tree & Q-tree

Literal polynomials: z — z, T — (1 — x). Draw tree of Q-values:

Clause polynomial: C(z,y,2) converted to Root = value of Zae{o,l}n Q(a).

P ;zVyVz = 1—(1—z)(1—y)(1—=2). ; i '
(z,9,2); zVyVz (1-2z)(1-y)(1-2) Node = value of sum on suffix, with prefix

SAT  polynomial: d(x1,...,2) — set to some fixed value.
Q(z1, ... ,zn) where Q(x) = [, Pi(x) if
¢ = /\’llCi. ' Qv = ZCE{O,I}? Q(b’ C)-

Property Q(z1,...,z,): for a € {0,1}", Verifier verifies Qp, = Quo + Qb1-

Q(a) =1 if a satisfies ¢ and 0 otherwise. Now need to to verify Quo and Qp;.

@ is a polynomial of degree m in each variable. Can't afford to do this!

#o = Eae{0,1}n Q(a).

Madhu Sudan, : 5 Madhu Sudan, : 6

#SAT in IP IP protocol for #SAT

Recursively Arthur is verifying: Qp = K(

Will arbitrarily consider )y, for every b € Z; ap)
mod p).

for some prime p.

What meaning does it have? None seemingly, Consider the function py(z) = 3_cc (0,132 @(b, 7, €)

but @y is well defined! Pp is a univariate polynomial of degree m.
Suppose prover claims Q) = #¢ = N. Will Arthur asks Merlin for py(x).

ask prover to prover @, = N( mod p). Merlin responds with A(z).
Arthur verifies h(0) + h(1) = K.

Arthur picks random o € 7Z, and sends to
Merlin,

Now recursively verify Qpo = h(a).

At end Arthur can compute verify Qp = K,
since Qn = Q(b).

Madhu Sudan, : 7 Madhu Sudan, : 8



Soundness

Completeness obvious.
For soundness, will claim:

Claim: If Q, # K, then Pr,[Qv. =
h(a)&h(0) + h(1) = K] < m/p.

Proof: CRT to get initialization right over p.
Schwartz Lemma for inductive step.

Theorem follows (modulo details).

Madhu Sudan, : 9

Extending compression: Low-degree
curves

Suppose computing Q(x) involves computing

Qc(y) and Qc(z), where y and z are not
related. Can we extend our idea to this case?

Lines in F™*: £:F — F™.
Geometrically - a line is a line.

Algebraically: it is a collection of n functions,
each of which is a degree 1 polynomial.

For any two points y and z, there is a line
¢ st. £(0) =y and £(1) = z. Specifically
Lt)=(1—-1t)y+tz.

Why are lines nice?

Madhu Sudan, : 11

Abstracting the proof

e Proof uses very little specific to #P.

e More about “downward self-reducibility and
polynomials”.

e Specifically, downward self-reducibility
leads to the tree.

e Algebra compresses questions down to one
question.

e In fact, don’t need any structure on the
questions!

Madhu Sudan, : 10

Qol:F — Fis a polynomial of (at most)
same degree as ().

Madhu Sudan, : 12



Extending the protocol’s capabilities

e At ith level, to verify Q(x) = a, the verifier
generates y and z and ¢ containing y and
z. Asks prover for QQ o /.

e Prover responds with degree d univariate
polynomial h.

e Verifier verifies consistency assuming h is
right, and then verifies h(«) is correct for
random c.

Madhu Sudan, : 13

Polynomial program satisfiability

Defn:  Polynomial straight line program
polynomial satisfaction is the language whose

instances are (x,a,(po,...,pr)) such that
pr(x) = a, where x € Z", a € Z
and pg,...,pr is an (n,d, L, w)-straightline

program of polynomials.

Madhu Sudan, : 15

Straightline program of polynomials

Defn: po,...,pr is an (n,d, L, w)-straight
line program of polynomials if

e Every p; is on at most n variables.
e Every p; is of degree at most d.

e p; is constructed from p;_; in a simple
form. (Formally, there is a polynomial time
algorithm A that, given i, x and an oracle
for p;_1 can compute p;(z) making at most
w non-adaptive queries to p;.)

® pg is computable in polynomial time.

Madhu Sudan, : 14

Polynomial program is in IP for w =2

Verifier runs in time poly(n,d, L,log ||x|/).

e Verifier picks random prime p =
poly(n,d, L,log ||x||) and sends to prover.
Sets a, < a, and xj, < x.

e Fori =L — 1 downto O do:

— Let y; and z; be queries of A on input
t+ 1, x;41. Let £; be line thru y; and
z;. Verifier asks prover for p; o £;. Prover
responds with h;.

— Verifier verifies that A’s answer on oracle
values h(0) and h(1) is @j41.

— Verifier picks random «a € Z, and sets
X; < El(a) and a; < hz(a)

Madhu Sudan, : 16



e At end verifier verifies ho(a) = po(4o(c)).

Completeness = 1.

Soundness < ¢d/p + CRT.

Madhu Sudan, : 17

PSPACE-completeness

Define longer sequence:

® §;i = Gis = fi-

L giO(aa ba C) - gi—l,s(aa C) ' gi—l,s(ca b)

° gij(a, b, C) = gi,j—l(aa ba CO)+gi,j_1(a’ b’ C1)’

where ¢ € Z;_j.

e g has degree at most C in the variables of
a, b, and at most 2C' in the variables of c.

o gOagloaglla ---3915,9205--- yGss isa sequence
of width w = 2.

e PSPACE completeness follows.

Madhu Sudan, : 19

Poly program sat. is PSPACE complete

e Basic idea: f;(a,b) has configurations a
and b as inputs (if from {0,1}°), and
fi(a,b) = 1 if get from a to b in exactly
2¢ steps.

e fy is a constant-degree polynomial, of
degree C' in each variable.

e fir1(a,b) = Y ccqoys fi(a,€)fi(c,b) is
also a polynomial of degree C' in each
variable.

e Unfortunately w # 2.

e Can fix easily: Will do summation slowly.

Madhu Sudan, : 18

Conclusion

e PSPACE complete problem (Poly. program
sat.) has an IP.

e PSPACE C IP.

e Can generalize lines argument even
“wider”, for w > 2.

e Exercise: Do this, and thus give direct
proof that the permanent has an interactive
proof, where the prover only needs to be
able to compute permanent.

Madhu Sudan, : 20



