Today - #P ⊆ IP. - Polynomial straightline programs and interactive proofs. - Straightline programs for PSPACE. © Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J PSPACE is closed under complement. Any reason to believe IP is? ### Recall #P, IP - #P is the class of counting functions. Prototypical example: #SAT # of satisfying assignments of a 3CNF formula. - IP is the class of languages with interactive proofs. So far know that IP contains NP and GNI (graph nonisomorphism). - Anything else? Today will show #P has interactive proofs. Also try showing PSPACE has IP. - Remarks: - Need to use multiple rounds of interaction (so not an "AM" proof system.). © Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J Basic Idea - Suppose Prover wishes to prove ϕ has A satisfying assignments. - Can use self-reducibility: - Can prove $\phi|_{x_1=0}$ has A_0 assigments and $\phi|_{x_1=1}$ has A_1 assigments, and that $A_0+A_1=A$. - Unfortunately # statements to be proved is growing exponentially. - Any way to commit to $\#\phi_{x_1=0}$ and $\#\phi_{x_1=1}$ jointly and then prove only one claim? - How does $\#\phi_{x_1=\alpha}$ behave as a function of α naturally? ## **Arithmetizing SAT** Literal polynomials: $x \mapsto x$, $\overline{x} \mapsto (1-x)$. Clause polynomial: C(x, y, z) converted to P(x, y, z); $x \lor y \lor z \mapsto 1 - (1 - x)(1 - y)(1 - z)$. SAT polynomial: $\phi(x_1,\ldots,x_n) \to Q(x_1,\ldots,x_n)$ where $Q(\mathbf{x}) = \prod_{i=1}^m P_i(\mathbf{x})$ if $\phi = \wedge_{i=1}^m C_i$. Property $Q(x_1, \ldots, x_n)$: for $\mathbf{a} \in \{0, 1\}^n$, $Q(\mathbf{a}) = 1$ if \mathbf{a} satisfies ϕ and 0 otherwise. Q is a polynomial of degree m in each variable. $$\#\phi = \sum_{\mathbf{a} \in \{0,1\}^n} Q(\mathbf{a}).$$ ### **#SAT** tree & Q-tree Draw tree of Q-values: Root = value of $\sum_{\mathbf{a} \in \{0,1\}^n} Q(\mathbf{a})$. Node = value of sum on suffix, with prefix set to some fixed value. $$Q_{\mathbf{b}} = \sum_{\mathbf{c} \in \{0,1\}^?} Q(\mathbf{b}, \mathbf{c}).$$ Verifier verifies $Q_{\mathbf{b}} = Q_{\mathbf{b}0} + Q_{\mathbf{b}1}$. Now need to to verify $Q_{\mathbf{b}0}$ and $Q_{\mathbf{b}1}$. Can't afford to do this! © Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J ©Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J ### **#SAT** in IP Will arbitrarily consider $Q_{\mathbf{b}}$ for every $\mathbf{b} \in \mathbb{Z}_p^?$ for some prime p. What meaning does it have? None seemingly, but $Q_{\mathbf{b}}$ is well defined! Suppose prover claims $Q_{\lambda} = \#\phi = N$. Will ask prover to prover $Q_{\lambda} = N \pmod{p}$. # IP protocol for #SAT Recursively Arthur is verifying: $Q_{\mathbf{b}} = K(\mod p)$. Consider the function $p_{\mathbf{b}}(x) = \sum_{\mathbf{c} \in \{0,1\}^?} Q(\mathbf{b}, x, \mathbf{c})$ $p_{\mathbf{b}}$ is a univariate polynomial of degree m. Arthur asks Merlin for $p_{\mathbf{b}}(x)$. Merlin responds with h(x). Arthur verifies h(0) + h(1) = K. Arthur picks random $\alpha \in \mathbb{Z}_p$ and sends to Merlin, Now recursively verify $Q_{\mathbf{b}\alpha} = h(\alpha)$. At end Arthur can compute verify $Q_{\mathbf{b}}=K$, since $Q_{\mathbf{b}}=Q(\mathbf{b})$. ### Soundness # Completeness obvious. For soundness, will claim: Claim: If $Q_{\mathbf{b}} \neq K$, then $\Pr_{\alpha}[Q_{\mathbf{b}\alpha} = h(\alpha) \& h(0) + h(1) = K] \leq m/p$. Proof: CRT to get initialization right over p. Schwartz Lemma for inductive step. Theorem follows (modulo details). ### **Abstracting the proof** - Proof uses very little specific to #P. - More about "downward self-reducibility and polynomials". - Specifically, downward self-reducibility leads to the tree. - Algebra compresses questions down to one question. - In fact, don't need any structure on the questions! © Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J ©Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J # Extending compression: Low-degree curves Suppose computing $Q_{\mathbf{b}}(\mathbf{x})$ involves computing $Q_{\mathbf{c}}(\mathbf{y})$ and $Q_{\mathbf{c}}(\mathbf{z})$, where \mathbf{y} and \mathbf{z} are not related. Can we extend our idea to this case? Lines in \mathbb{F}^n : $\ell : \mathbb{F} \to \mathbb{F}^n$. Geometrically - a line is a line. Algebraically: it is a collection of n functions, each of which is a degree 1 polynomial. For any two points \mathbf{y} and \mathbf{z} , there is a line ℓ s.t. $\ell(0) = \mathbf{y}$ and $\ell(1) = \mathbf{z}$. Specifically $\ell(t) = (1-t)\mathbf{y} + t\mathbf{z}$. © Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J Why are lines nice? $Q \circ \ell : \mathbb{F} \to \mathbb{F}$ is a polynomial of (at most) same degree as Q. ### **Extending the protocol's capabilities** - At *i*th level, to verify $Q(\mathbf{x}) = a$, the verifier generates \mathbf{y} and \mathbf{z} and ℓ containing \mathbf{y} and \mathbf{z} . Asks prover for $Q \circ \ell$. - ullet Prover responds with degree d univariate polynomial h. - Verifier verifies consistency assuming h is right, and then verifies $h(\alpha)$ is correct for random α . Straightline program of polynomials Defn: p_0, \ldots, p_L is an (n, d, L, w)-straight line program of polynomials if - Every p_i is on at most n variables. - Every p_i is of degree at most d. - p_i is constructed from p_{i-1} in a simple form. (Formally, there is a polynomial time algorithm A that, given i, \mathbf{x} and an oracle for p_{i-1} can compute $p_i(x)$ making at most w non-adaptive queries to p_i .) - ullet p_0 is computable in polynomial time. © Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J © Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J #### 1.4 # Polynomial program satisfiability Defn: Polynomial straight line program polynomial satisfaction is the language whose instances are $(\mathbf{x}, a, \langle p_0, \dots, p_L \rangle)$ such that $p_L(\mathbf{x}) = a$, where $\mathbf{x} \in \mathbb{Z}^n$, $\mathbf{a} \in \mathbb{Z}$ and p_0, \dots, p_L is an (n, d, L, w)-straightline program of polynomials. # Polynomial program is in IP for w=2 Verifier runs in time $poly(n, d, L, \log ||\mathbf{x}||)$. - Verifier picks random prime $p \approx \text{poly}(n, d, L, \log ||\mathbf{x}||)$ and sends to prover. Sets $a_L \leftarrow a$, and $\mathbf{x}_L \leftarrow \mathbf{x}$. - For i = L 1 downto 0 do: - Let \mathbf{y}_i and \mathbf{z}_i be queries of A on input i+1, \mathbf{x}_{i+1} . Let ℓ_i be line thru \mathbf{y}_i and \mathbf{z}_i . Verifier asks prover for $p_i \circ \ell_i$. Prover responds with h_i . - Verifier verifies that A's answer on oracle values h(0) and h(1) is a_{i+1} . - Verifier picks random $\alpha \in \mathbb{Z}_p$ and sets $\mathbf{x}_i \leftarrow \ell_i(\alpha)$ and $a_i \leftarrow h_i(\alpha)$. • At end verifier verifies $h_0(\alpha) = p_0(\ell_0(\alpha))$. Completeness = 1. Soundness $\leq \ell d/p + CRT$. C Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J # **PSPACE-completeness** Define longer sequence: - $\bullet \ g_i = g_{is} = f_i.$ - $g_{i0}(\mathbf{a}, \mathbf{b}, \mathbf{c}) = g_{i-1,s}(\mathbf{a}, \mathbf{c}) \cdot g_{i-1,s}(\mathbf{c}, \mathbf{b}).$ - $g_{ij}(\mathbf{a}, \mathbf{b}, \mathbf{c}) = g_{i,j-1}(\mathbf{a}, \mathbf{b}, \mathbf{c}0) + g_{i,j-1}(\mathbf{a}, \mathbf{b}, \mathbf{c}1)$, where $\mathbf{c} \in \mathbb{Z}_p^{s-j}$. - g has degree at most C in the variables of a, b, and at most 2C in the variables of c. - $g_0, g10, g_{11}, \ldots, g_{1s}, g_{20}, \ldots, g_{ss}$ is a sequence of width w=2. - PSPACE completeness follows. ### Poly program sat. is PSPACE complete - Basic idea: $f_i(\mathbf{a}, \mathbf{b})$ has configurations \mathbf{a} and \mathbf{b} as inputs (if from $\{0, 1\}^s$), and $f_i(\mathbf{a}, \mathbf{b}) = 1$ if get from \mathbf{a} to \mathbf{b} in exactly 2^i steps. - f_0 is a constant-degree polynomial, of degree C in each variable. - $f_{i+1}(\mathbf{a}, \mathbf{b}) = \sum_{\mathbf{c} \in \{0,1\}^s} f_i(\mathbf{a}, \mathbf{c}) f_i(\mathbf{c}, \mathbf{b})$ is also a polynomial of degree C in each variable. - Unfortunately $w \neq 2$. - Can fix easily: Will do summation slowly. © Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J ### **Conclusion** - PSPACE complete problem (Poly. program sat.) has an IP. - PSPACE \subseteq IP. - Can generalize lines argument ever "wider", for w>2. - Exercise: Do this, and thus give direct proof that the permanent has an interactive proof, where the prover only needs to be able to compute permanent.