6.441 Transmission of Information Feb 14, 2006

Lecture 3
Lecturer: Madhu Sudan Seribe: Daniel Kim (dskim116)

1 Today’s outline
e Property of information and entropy
e New notions: KL divergence, Markov chains

e results: non-negativity of mutual information, data processing inequality,
Fano’s inequality
2 Lecture 2’s Review

Let us define marginal and joint distributions. p(z) denotes a marginal proba-
bility that X = x, p(y) denotes a marginal probability that ¥ = y and p(z,y)
denotes a joint probability that X = x and Y = y.

Zp ) log p(

e Entropy:

e Conditional entropy:
H(X|Y) H(X|Y = Puly).
1Y) Z py(y | Y) ZP z,y)1
s, ( )

e Mutual information:

w9 =L pey log - P 1(y.0)

e Chain rule:
H(z,y) = H(z) + H(yl|x)
Applying this iteratively, we derive:

H(zy, w9, ,x,) = H(21) + H(z2|z1) +

n
= ZH(%|931,$2, L Tio1)
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3 IsI(X,Y)>07?

Proving I(X,Y’) > 0 is equivalent to proving that H(X|Y) < H(X).

=N (e log LEY) gl P@Y)
) —;p( N8 Ly pm) [l gp(x)'p(y)] ="

with equality when = and y are independent because:

p(x,y) = p(x) ply) = I(z,y) =0

Before we prove Claim 3, let us define function convexity and state Jensen’s
Inequality.

Definition 1 Function f is convex when either of following conditions holds:

f R —TR is convez if f"(x) >0 Va
f iR —=R is strictly convezx if f"(x) >0 Vz

For example, z2, e* and — logx are convex functions.
Theorem 2 Jensen’s Inequality: E[f(z)] > f[E[z]] provided f is conver.

Now, here is the claim.

Claim 3 E; ,)p [log 583} >0 with equality when p(z,y) = q(z,y).

Proof Let us define new variable z = 424 Then,
p(z,y)

p(z,y) 1
Eay~r {log q(x y)} =5 {log Z]

= F[—logz]
> —log E[2] (. Jensen’s Inequality)

- 1oy [129]

p(z,y)
= —log Zp(x,y)zgzz;] = —log [Z q(x,y)} = —logl=0.

Here, note that E [log %} shows how much similarity ¢(x,y) and p(z,y)

share.

4 Relative Entropy

Definition 4 The relative entropy or Kullback-Liebler distance between
two probability mass functions p(z) and q(z) is defined as:

= 2) 1o p(z)
D(pIIQ)—ZZ:p( )1 B
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4.1 Example

Let us consider the case when z € {0,1} with following distributions:

X = 0 with probability 1
P = 1 with probability 0

X = 0 with probability 1/2
%=1 1 with probability 1/2

Based on the above scenario, we get D(p||¢) = log 2 and D(g||p) = cc.

4.2 Compression motivation example

Let us consider our satellite example with  ~ p = (p1,p2, - ,pn). Opti-

mal compression should require [log ii‘ bits long string. x with distribution

q would require [log ﬂ bits long string. By definition, average inefficiency of

compressing by ¢ when given distribution is p is D(p||q).

4.3 Basic Property
e D(p|lg) > 0 with equality only when p = ¢
o I(X,Y) = D(p(z,y)llp(z) - p(y)) = 0
e (X, Y)=H(X)—- H(X|Y) >0 (. conditioning reduces entropy)

o H(Xy, Xo, -, Xpn) = H(X1) + H(X2[X1) + H(X5|(X1,X2)) + -+
Substituting the following:

H(X,) < H(X;)
H(Xq|X1) < H(X9)
H(X3[(X1,X2)) < H(X3)

we can reduce it to:
LH(X, Xy X)) <) H(X).

o H(z) =1log(|Q%|) — D(p||U) where U is uniform distribution on €2,. Be-
cause D(p||q) > 0, we derive that H(z) < log(|Q2]).

4.4 1Is entropy concave?

In order to prove whether entropy is concave or not, we need to show following;:

H(Ap+(1—=X)gq) > AH(p)+ (1 — N\)H(q) (1)



Proof Let us assume that x ~ p and y ~ ¢ on set Q. Also, let us define
another variable b with following distribution.

b— 0 with probability A
" | 1 with probability 1 — X

Using these variables, let us define a new variable Z with following distribution

Z :if b =0 then z; else y.

Then, the left-hand side of Equation (1) is reduced to H(Z) and the right-hand
side of Equation (1) is reduced to H(Z|b). Because conditioning reduces the
uncertainty, H(Z) > H(Z|b). This proves that the entropy is concave. l

5 Data Processing Inequality (Markov Chain)

Let us consider three states, X, Y, and Z. X — Y — Z forms a Markov chain
if and only if X and Z are conditionally independent given Y. Let us put the
definition into mathematical term. X — Y — Z forms a Markov chain if and
only if either of following conditions is true:

pz|(X,Y)(Z|(33,y)) :pz|Y(Z|Z/)
or

p(X,Z)\Y((xa 2)|y) = PX|Y($|Z/) : PZ\Y(Z|Z/)

Also, X - Y - Z <= Z —-Y — X. Now let us consider the property of
Markov chain.

Claim 5 If X - Y — Z, then I(X,Z2) < I(X,Y).
Proof

Substituting the fact that I((X, Z2)|Y) =0and I((X,Y)|Z) > 0, we get I(z,2) <
I(z,y). A

6 Fano’s Inequality

Let E be an event and let P, denote the probability when X # X.
Theorem 6 When H(X|Y) is large,

S HX|Y)-1
°= log |9
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Proof

Let us take a look at each term:

H(E|(X,Y))=0
H(E|Y)< H(P,)

H(X|(E)Y))=FP.-HX|(E=1Y))+ (1 - F)H(X|(E=0,Y))
:Pe'H(X‘(E: 1’Y))
S Pelog(|9w| - 1)

Substituting these into original equation, we prove the theorem. W
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