
18.405J/6.841J Advanced Complexity Theory February 12, 2007

Lecture 2
Lecturer: Madhu Sudan Scribe: Alan Deckelbaum

1 Administrivia

• Make sure you’re on the mailing list. You should have received an email earlier today.

• Sign up for scribing.

• Swastik’s office hours:

– Thursdays 6-8pm Gates 5th floor

– Tuesday 2/20 (same location)

2 Overview

The topic of lecture today is diagonalization. We will cover the following main points:

• NTIME(o(n2)) (NTIME(n10)

• Ladner’s Theorem

• Relativization

3 Introduction to Diagonalization

Diagonalization is the main technique we have for proving lower bounds. (However, it is very unlikely that
we will be able to prove P 6= NP using diagonalization, as we will see at the end of the lecture.) Our first
example is to use diagonalization to prove that TIME(o(n2)) (TIME(n10). The idea is to enumerate all
deterministic Turing Machines that run in TIME(n2). Call these machines

M1,M2,M3, . . . ,Mi, . . .

and let Li be the language accepted by Mi. Also, we will enumerate all binary strings

x1, x2, x3, . . . , xi, . . .

We will define Lj(xi) = 1 if xi ∈ Lj , 0 otherwise. We can now imagine a large binary matrix with the M ’s
going across and the x’s going down, so that aij in the matrix is equal to Lj(xi). We construct the language
L to be the diagonal complement of the matrix. In other words, xi ∈ L if and only if xi 6∈ Li. Thus, we see
that L 6= Li for any i, and therefore L 6∈ TIME(n2). It remains to show that L ∈ TIME(n10). In other
words, we must construct a machine M running in n10 time such that L(M) = L. We will need two basic
primitives in order to create this machine:

• Simulation - M should be able to simulate Mi for every i. By careful simulation, this can be done
without overstepping the time bounds. (Even if the simulation is sloppy, it is not very difficult to
simulate Mi with only a quadratic increase in time required.)

• Complementation - M needs to be able to complement the result of Mi’s computation.

2-1

We would also like a way to enumerate all of the Mi’s. Notice that it is possible to construct a language
that differs from each Mi on infinitely many inputs. For example, we can use the sequence

M1,M1,M2,M1,M2,M3,M1,M2,M3,M4 . . .

This enumeration also avoids potential difficulties with constant factors on running time: M will eventually
differ with Mi on some input that is large enough that it can be computed in the running time of our
machine.

All of these techniques for diagonalization depend on our ability to take the complement of a machine’s
computation. When the complexity class isn’t closed under complementation, this can be nontrivial. For
example, the question arises of how one might be able to use a similar idea to show that a language isn’t in
NP.

4 NTIME(n2) (NTIME(n10)

For now, we will focus on a single NTIME(n2) machine, M , of length i. We want to construct a language
L 6= L(M) (for some sufficiently long strings of length ≥ i). Furthermore, we want to be able to prove
that L ∈ NTIME(n10). We notice immediately that NTIME(n2) (NTIME(2n3

), as NTIME(n2) ⊆
TIME(2n2

) (TIME(2n3
) ⊆ NTIME(2n3

).
We could come up with a sequence of increasingly growing functions, say

T1(n), T2(n), . . . , Tk(n)

where T1(n) = n2, and Tk(n) = 2n3
. We then know that there must be some i such that

NTIME(Ti(n)) 6= NTIME(Ti+1(n))

since NTIME(T1(n)) 6= NTIME(Tk(n)).
Take the machine M , and look at all inputs between 0i, 0i+1, 0i+2, . . . , 0I , for some very large I. (The size

of I will be specified in more detail later.) We will construct the language L, which shifts the above language
by one 0 of the input. In other words, 0k is in L if and only if 0k+1 is in L(M), for all k between i and I − 1.
We have L 6= L(M) as long as it is not the case that either 0k ∈ L(M) for all k ∈ {i, i + 1, . . . , I}, or instead
0k 6∈ L(M) for all k ∈ {i, i + 1, . . . , I}. Our idea to solve this potential difficulty is to deterministicially
simulate M on 0i, and set OI to be the complement of this result. If I is large enough, we will be able to
deterministically simulate M on 0i without overstepping the time bounds. Provided that I >> i, we would
have

L(M) ∈ NTIME(T (n))⇒ L ∈ NTIME(T (n + 1))

All that remains is to make I large enough. This can be done by ensuring

2T (i) < T (I)

which can be accomplished provided that we can compute T easily. In fact, this approach can be used to
show that NTIME(n2) 6= NTIME(o(n2)).

The proof combining the above approach with enumeration was not shown in lecture, but an outline
appears below. (The theorem was proved by Cook, and this particular proof is from Fortnow’s survey on
diagonalization. See van Melkebeek’s paper for more information.)

Let M1,M2, . . . be an enumeration of NTIME(T (n)) machines.

I first define the following subprocedure, which calculates j (the index of the machine to be diagonalized
against), as well as i and I (where i and I are defined as above).

COMPUTE-INDICES: On input On:

2-2

1. Set j ← 1, i← 1, I ←∞

2. While I < n:

(a) Let I be the smallest integer such that NTIME(T (i)) ⊂ DTIME(T (I)).

(b) If I ≥ n, break.

(c) Set j ← j + 1, i← I + 1

3. Return (j, i, I).

We define the language L such that L(0n) is computed by the following procedure:

On input On:

1. Run COMPUTE-INDICES(0n) to determine j, i, and I.

2. If n = I then set L(0I) = the opposite of Mj(0i)

3. Otherwise, set L(Oi) = M(0i+1)

We see that COMPUTE-INDICES simply returns the smallest index j such that Mj hasn’t already been
diagonalized against. (If I < n, then we can assume that on some smaller input, L already differs from the
machine whos index is j.) COMPUTE-INDICES thus returns the smallest j such that the corresponding I
is ≥ n, and thus Mj hasn’t already been diagonalized against. The actual procedure for L then runs the
algorithm described above for diagonalizing against a single NTM. With an efficient method of simulating
another NTM, this yields the following theorem:

Theorem 1 (Cook) For every time-constructible function T (n),

NTIME(o(T (n))) (NTIME(T (n + 1))

This proof uses lazy diagonalization and a very effective simulation of a NTIME(o(T (n))) machine.

5 Ladner’s Theorem

5.1 Background

NP-completeness was introduced in the 1970’s.

• Cook ’70 ← defined NP-completeness

• Karp ’72 ← gave many examples of NP-complete problems

• Levin ’72 ← independently did work similar to that of both Cook and Karp.

Levin’s advisor, Kolmogorov, asked Levin about graph isomorphism, factoring, and linear programming,
three problems that we didn’t know whether they were in P and also didn’t have a proof of their NP -
completeness. (We now know that linear programming ∈ P .)

We ask the question: for all L ∈ NP , is it true that either L ∈ P or L is NP -complete?

2-3

5.2 Ladner’s Theorem

Ladner showed that if NP 6= P , then the answer to the above question is negative. Diagonalization is once
again the tool to prove this.

Assume NP 6= P . We want a language L ∈ NP such that L isn’t NP -complete and L 6∈ P . We’ve seen
examples of proving that something isn’t in P , but we haven’t yet dealt with a situation of showing that
something isn’t NP -complete. Our proof will be based on the fact that if L is NP -complete, then SAT can
be decided by a deterministic polynomial time machine with an oracle for L.

Notation: ML is an algorithm M using an “oracle” for language L as a subroutine. ML ∈ PL implies
that M runs in polynomial time, assuming it takes unit time to decide L.

Let
M1,M2, . . . ,Mi, . . .

be an enumeration of polynomial time oracle machines. We would like SAT 6= ML
1 ,ML

2 , . . . (as L is not
NP -complete). Furthermore, as L 6∈ P , we would like L 6= M∅

1 ,M∅
2 , (Recall that ∅ means an oracle for

the empty language, which can clearly be simulated in polynomial time.)
Our goal is to construct a language that looks like SAT some of the time and like ∅ the rest of the time.

Look at the sequence
ML

1 ,M∅
1 ,ML

2 ,M∅
2 ,ML

3 ,M∅
3 , . . .

We want to construct L such that L is not M∅
i (after a finite prefix), and that SAT is not ML

i (after a finite
prefix) for any i. We define L as follows:

On input x, the machine N deciding L will go sequentially go through the above enumeration of machines
to ensure that machines with L-oracles differ from SAT, and machines with ∅-oracles differ from L. (If a
machine queries the L oracle, N is able to simulate itself. Notice that N might run out of computation time
when performing this simulation. This case will be dealt with shortly.)

I begin by defining the following subprocedure:

DISAGREE(Polynomial Time Oracle Machine M , string y):

1. If M is a machine with an L-oracle:

(a) Simulate M on y, and test if SAT (y). If these simulations return opposite results, return YES.
Otherwise, return NO.

2. If instead M is a machine with a ∅-oracle:

(a) Simulate M on y, and test if L(y). If these simulations return opposite results, return YES.
Otherwise, return NO.

Now, on a given input x, we can define N ’s behavior as follows:

On input x:

1. Set i← 1

2. Set string y = “0”

3. Until N exceeds its polynomial time bound:

(a) While DISAGREE(M∅
i , y) returns NO, increment y in lexicographic order

2-4

(b) While DISAGREE(ML
i , y) returns NO, increment y in lexicographic order

(c) Set i← i + 1

4. When N is about to exceed its time bound:

• If N was in the process of running DISAGREE with some machine M∅
i , return SAT (x). If instead

N was in the process of running DISAGREE with some machine ML
i , return 0.

First, I will show that L is not NP-complete. If L were NP complete, then some ML
i would be computing

SAT. In this case, DISAGREE(ML
i , y) would always return NO, and thus N would get stuck on this loop

in step 3b. However, in this case, L would be equal to all 0’s after a finite prefix, and thus L ∈ P . However,
the combination of L being NP-complete and L ∈ P implies that P = NP , contradicting our assumption.

It is clear, on the other hand, that L ∈ NP . A nondeterministic polynomial time machine (with knowledge
of N ’s time bound) can simply simulate N on a input x. We can then manually solve SAT (x) if necessary,
since SAT ∈ NP .

It remains now to show that L 6∈ P . If L ∈ P , then it must be the case that for all sufficiently large
inputs, L is the same language as M∅

i for some i. In this case, DISAGREE(M∅
i , y) returns NO for all

sufficiently large y, and thus L is the same as SAT after some finite prefix. However, if L = SAT after
a finite prefix and L = M∅

i , then we would have SAT ∈ P , which contradicts our initial assumption that
P 6= NP .

6 Diagonalization and the P vs. NP Question

A paper by Baker, Gill, and Solovay asked whether diagonalization could be used to prove P 6= NP . The
“politically correct” answer is simply that this depends on the truth of P 6= NP . The functional answer
provided by Baker, Gill, and Soloway is based on the fact that diagonalization proofs relativize. However,
the proof of P 6= NP would not relativize.

Enumerate M1,M2, . . . of oracle polynomial time machines. If each machine is given an oracle for some
language O, we get a collection {MO

1 ,MO
2 , . . .}, the set of languages decided in PO. Furthermore, we have

{M∅
1 ,M∅

2 , . . .} = P . Similarly, by enumerating NTM’s with access to oracles, we can obtain the class NPO,
etc.

Diagonalization doesn’t distinguish between the particular oracle used. Thus, if diagonalization shows
P 6= NP , it means that PO 6= NPO for all oracles O. Therefore, the following two results demonstrate that
it is not likely that diagonalization can be used to show P 6= NP .

Theorem 2 There exists an oracle O such that PO = NPO.

Proof Let O be a PSPACE-complete language, such as TQBF. We then have PTQBF = PSPACE =
NPSPACE = NPTQBF .

Theorem 3 There exists an oracle O such that PO 6= NPO.

The proof uses diagonalization. A language that demonstrates this result is

LO = {x|∃y such that |y| = |x| and O(y) = 1}

We see that LO ∈ NPO for all O. We want to choose an O such that LO 6∈ PO. We will ensure that
LO 6= MO

j for inputs of length greater than or equal to i. Look at all of the queries that Mj makes to O
when it computes on input x, where x of a size larger than any strings that have been previously decided
whether or not they are in the language thus far. For all inputs of length less than x, O answers whatever it
has previously returned. The oracle also sets O(x) = 0, and returns 0 for all strings of length greater than

2-5

or equal to |x| that are queried by the machine. As Mj can only ask polynomially many queries to O, for
sufficiently large i the polynomial in i will be less than 2i, and thus there are other strings of length i that
Mj has not queried. The value of these inputs can be set to negate the answer to MO

j (0i). On the other
hand, LO ∈ NP , since the NP machine can nondeterministically query O on all strings of the appropriate
length, and the machine accepts if any one of these queries accepts.

2-6

