
6.841 Advanced Complexity Theory March 7, 2007

Lecture 9

Lecturer: Madhu Sudan Scribe: Jaime Quinonez

1 Overview

We will introduce a new model of computation, the debate, that uses alternation. Whereas before alternation
gave new insight into time and space complexity of languages, we will now see that allowing alternation is
itself an interesting computational phenomenon. We will also introduce the Infinite Hierarchy Assumption
(IHA), which informally states that allowing one more alternation allows you to solve more problems. This
assumption states that the polynomial hierarchy is infinitely large and that no two classes in the hierarchy
are identical. We will show that if you take IHA to be true, you get the following result, known as the
Karp-Lipton Theorem:

Theorem 1 Karp-Lipton Theorem

IHA⇒ NP 6⊆ P/poly

2 Formalizing a Debate

Say that you have some statement x and two parties, Alice (A) and Bob (B) such that A believes x is true
and B believes x is false. Each party can try to convince others that their belief is correct by broadcasting
a public message to the other party. Unlike Communication Complexity, we allow each message to have
arbitrary length, although we will later see that each message should have polynomial (in |x|) length in order
to be meaningful. Each party is also allowed an unbounded amount of time to compute their messages.
We can clearly see that you would never have one party send two consecutive messages without receiving
a message in between, since the two messages sent could just be concatenated into one message, unlike
Communication Complexity which required 1-bit messages. Thus, in this model, A sends a message a1

trying to prove that x is true, then B sends a message a2 in response trying to prove that x is false, then
A sends a message a3 in response trying to prove that x is true, and so on for a predetermined number of
rounds.

Someone listening to the debate can then ask themselves, “Is x true?” Initially, we assume the listener
is unable to compute this on their own. After listening to the debate, a listener can ask themselves, “Given
(x, a1, a2, . . . , ai), is x true?” The listeners can’t compute the ai on their own, but assuming that both
parties A and B are doing the best they can in the debate, and so the ai are optimal, the listener can use
the ai to prove whether or not x is true. This is similar to the polynomial-length witness for languages in
NP . Assuming that x ∈ L for a language L ∈ NP , there exists a witness w such that a polynomial time
verifier can accept x and w as input and prove that x is in L. This definition is exactly a debate where
only one message can be sent, and this message is sent by the party trying to prove x is true. Does allowing
another round (allowing the other party to respond) change what can be computed? The key question we are
considering is how many rounds should be necessary in the debate between A and B to convince a listener
V about the truthfulness of x? As we will see, we don’t know the answer, but we believe that allowing more
messages to be sent in the debate does allow the listener to decide more languages.

Formally, a language Ldebate that can be decided with a debate of i messages, starting with the party
that wants to prove the input x is true, can be defined as:

Definition 2 A debatable language

Ldebate = {x | there exists a verifier V such that

x ∈ Ldebate ⇒ ∃a1∀a2∃a3 . . .Qiai s.t. V (x, a1, a2, . . . , ai) = 1

x 6∈ Ldebate ⇒ ∃a1∀a2∃a3 . . .Qiai s.t. V (x, a1, a2, . . . , ai) = 0}
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Here, Qi ⊂ {∃, ∀} denotes the ith quantifier.

One can see that since there are only i quantifiers, in an alternating sequence, Ldebate can be decided by
an ATM with i alternations, starting with the ∃ quantifier.

3 Classes of debatable languages

We can also define a class for a debatable language as follows:

Definition 3 A class of debatable languages

ΣP
i = {Ldebate | Ldebate can be debated with i rounds of interaction

and the party trying to prove x ∈ L sends first message}

While we don’t entirely know whether it makes a difference which party goes first, we can similarly define
the class of debatable languages if the party trying to prove x 6∈ L goes first.

Definition 4 A class of debatable languages

ΠP
i = {Ldebate | Ldebate can be debated with i rounds of interaction

and the party trying to prove x 6∈ L sends first message}

From these definitions, it is clear to see some obvious relations to previous complexity classes. ΣP
0 is the

class of languages decidable by a polynomial time verifier listening to an empty debate, and thus ΣP
0 = P .

ΣP
1 allows the party trying to prove x ∈ L one message as input to the verifier, which serves as a witness

to the verifier, so ΣP
1 = NP . Similarly, ΠP

1 = coNP . Also note that since the verifier V has to run in
polynomial time, it can only process the messages if each message has polynomial length. Thus, the only
meaningful messages in this definition are those that have polynomial length.

There are a few other obvious yet highly useful properties about these classes.

Fact 5 Facts about ΣP
i and ΠP

i :

• ΣP
i is the class of languages decidable in ATIME[i, poly] starting with the ∃ state. This follows directly

from the definition since there are only i quantifiers, starting with ∃, and so you only need to have i
alternations between quantified states.

• ΣP
i ⊆ ΣP

i+1. If you have i+ 1 rounds in the debate, you can clearly always just ignore the last round

and thus simulate only i rounds.

• ΣP
i ⊆ ΠP

i+1. Similarly, ΠP
i+1 starts with an ∀ message, then the next i messages start with an ∃ message

and thus if you ignore the first message you have ΣP
i .

• ΠP
i ⊆ ΣP

i+1. The argument is the same as above.

• PH = ∪iΣ
P
i = ∪iΠ

P
i . This equality just follows from the previous two properties.

It is also helpful to define a complete problem for these classes, which we can do by simplifying the
PSPACE-complete language TQBF (which either stands for “True Quantified Boolean Formula” or “To-
tally Quantified Boolean Formula”, depending on the reader’s preference).

Definition 6 i · ∃TQBF

i · ∃TQBF = {φ|φ is a 3-CNF and ∃a1∀a2∃a3 . . .Qiai s.t. φ(a1, a2, . . . , ai) = true}

It is fairly obvious to verify the following claim:

Claim 7 i · ∃TQBF is ΣP
i -complete.
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4 The Infinite Hierarchy Assumption

The Infinite Hierarchy Assumption says that there are infinitely many distinct complexity classes in the
polynomial hierarchy.

Definition 8 The IHA

IHA : ∀i : ΣP
i 6= ΣP

i+1

¬IHA : ∃i : ΣP
i = ΣP

i+1

The IHA is a very strong assumption that would have many implications if it were true. Taking i = 0
would give ΣP

0 6= ΣP
1 , which is exactly P 6= NP . However, if the IHA is false, it means that at ΣP

i = ΣP
i+1

for at least one i, not necessarily for i = 0, and thus nothing can be said with certainty about P vs. NP .

Lemma 9 If the IHA is false,

ΣP
i = ΣP

i+1 ⇔ ΣP
i = ΠP

i

Proof

To see that ΣP
i = ΣP

i+1 ⇒ ΣP
i = ΠP

i , note that ΠP
i ⊆ ΣP

i+1 = ΣP
i+1. Thus, ΠP

i ⊆ ΣP
i and a similar

argument would show ΣP
i ⊆ ΠP

i , implying ΣP
i = ΠP

i .
To see that ΣP

i = ΠP
i ⇒ ΣP

i = ΣP
i+1, look at how you might have a debate to decide a language L ∈ ΣP

i+1.
You have L = {x|∃a1∀a2∃a3 . . . Qi+1ai+1 s.t. V (x, a1, a2, . . . , ai+1) = 1}. To have the debate, you start by
sending an ∃ message, then an ∀ message, and so on. Once you send the exists message a1, you can view the
rest of the debate as deciding a language L′ = {x, a1|∀a2∃a3 . . . Qi+1ai+1 s.t. V (x, a1, a2, . . . , ai+1) = 1}.
Therefore you can define the original language as L = {x|∃a1 s.t. (x, a1) ∈ L′}. Since L′ starts with a ∀
message and has i messages, L′ ∈ ΠP

i . Since ΠP
i = ΣP

i , L′ ∈ ΣP
i . Thus, it can be debated with a debate

with i messages starting with an ∃ message. This means that L can be debated with i+ 1 messages starting
with an ∃ message, and having the second message also be an ∃ message. But you can simply collapse these
two messages into one message, meaning you only need i messages, so L ∈ ΣP

i , which completes the lemma.

Theorem 10 If the IHA is false, everything above a certain point in the hierarchy collapses into a single

class. Specifically,

∃i : ΣP
i = ΣP

i+1 ⇒ ∀j > i : ΣP
i = ΣP

j

Proof This is fairly easy to see since for ΣP
i = ΠP

i implies ΣP
i = ΣP

i+1, from the previous lemma, and you
can just keep propagating this argument through the entire hierarchy above ΣP

i .

5 Proof of Karp-Lipton Theorem

We are now ready to prove the Karp-Lipton Theorem stated earlier, that IHA ⇒ NP 6⊆ P/poly. To prove
this, we can equivalently prove that NP ⊆ P/poly ⇒ ΣP

3 = ΠP
3 , violating the IHA.

Proof

The Idea of the proof is that if NP ⊆ P/poly, we can guess, for problems of size n, a polynomial-
sized circuit C that solves SAT problems. To verify that C = SAT , we can say that ∀φ : C(φ) =
SAT (φ) iff ∃y s.t. φ(y) = 1. While it not might seem helpful to say that we can solve SAT in a three-round
debate, since we could solve it in a one-round debate, it actually is helpful in showing ΣP

3 = ΠP
3 under these

assumptions.
We can write out the debated language deciding SAT more formally as:

SAT = {x|∃C∀φ, y′∃y : C(φ) = 0 ⇒ φ(y′) = 0, C(φ) = 1 ⇒ φ(y) = 1}
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Writing these in terms of messages and a polynomial-time verifier V which checks the conditions,

SAT = {x|∃a1∀a2∃a3 V (x, a1, a2, a3) = 1}

The key idea is that SAT ∈ ΣP
3 .

Now consider a debatable language L ∈ ΠP
3 . We wish to use SAT ∈ ΣP

3 to show that L ∈ ΣP
3 , which

completes the proof. Thus, we have

L = {x|∀a1∃a2∀a3 V (x, a1, a2, a3) = 1}

If we could guess a1 and a2, we could use the related language:

L′ = {(x, a1, a2)|∀a3 V (x, a1, a2, a3) = 1}

It is clear that L′ ∈ coNP . If we define ψ(x, a1, a2) = (x, a1, a2). By assumption that coNP ∈ P/poly,
there exists a circuit C deciding the satisfiability of ψ. Thus, we can use the debate for deciding satisfiability
to decide L′, which gives L′ ∈ ΣP

3 , which gives ΣP
3 = ΠP

3 .
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