6.841 Advanced Complexity Theory

Lecture 16

April 9, 2007

Lecturer: Madhu Sudan Scribe: Amanda Redlich, Shubhangi Saraf

1 Overview

In today’s lecture we will cover the following
e Permanent: worst case < average case
e Permanent C IP

e towards IP O PSPACE

2 The Permanent

We begin be recalling the definition of the permanent of a matrix. It is a function
of n? integers.

Permanent ((xij)?,jzl) = Z Hxiﬂ(i)

es, i=1

We observe that the permanent of an n X n matrix is a degree n polynomial
in n? variables. It is a “low-degree multivariate polynomial,” and this turns out
to be a very interesting feature of the permanent, as we’ll see in the rest of the
lecture.

3 Random Self-Reduction for Low-Degree Poly-
nomials

This problem was first studied by Beaver—Feigenbaum and Lipton. The basic
question is as follows: We are given a polynomial f(x1,...,2,,) of degree d over
some finite field F = Z,, (say). Given an algorithm that computes f on random
instances, can we compute f(ai,...,a) for any worst-case a1, as, ..., am?

There are two ways of understanding what it means to have an algorithm
that computes f on random instances. When each input z;; for 1 < ¢ < m is
chosen independently and uniformly

from Z,, either
e for most instances, say for (1 — #) fraction, the algorithm outputs the

right answer, and for # fraction it gives the wrong answer, or

16-1

e the algorithm runs in expected polynomial time for the given distribution,
and always outputs the right answer.

The first notion is weaker than the second, since we know that we can easily
convert an algorithm of the second kind to the first kind. We’ll assume the
weaker notion when we talk about an algorithm that computes f on random
instances.

4 Worst Case to Average Case Reduction for
the Low Degree Polynomials

Let f be an m-variate polynomial, with degree < d. Then f has (djnm) = (dfim)

coefficients. Since this number is exponentially large, it is not tractable to write

down all the terms of the polynomial explicitly. To get around this problem, we

employ the “dimension-reduction” trick.

Let’s say that we have a poly-time algorithm A that evaluates f correctly
on most inputs. Assume that for z € Z', f(r) = A(z), unless x € B, where
Bl<s=1
P n

The goal is to have an algorithm that computes f at a point @ = (a1, ..., an),
with high probability. The idea for doing this is as follows: The algorithm picks
a random line through a, by picking a random point b uniformly from Zy', and
drawing the line through @ and b. It them samples the line at d + 1 points,
and if it is lucky each time, i.e., at each of those points, A equals f, then those
values uniquely determine f on the entire line. We can interpolate to find the
function explicitly on the entire line, and thus evaluate the function at a.

We analyze the above scheme. Let @ = (a1, as, ..., ay);and b= (by, b, ..., by).
Call the line I, 5 = {l; 5(t) := (a1 +tb1, a2 +tba, ..., am + thy)|t € Zy}.

When we restrict f to the line, we get f, 5(t) = f(a+ tb) is a polynomial in
one variable, and of degree < d.

We observe that for any fixed @ and non-zero ¢, a+tb is distributed uniformly
in Z" if b is distributed uniformly in Z,". Hence,

Prylf(a+ tb) # A(a + tb)] < 4.
By the union bound,
Prp[3t € {1,2,...,d + 1}|f(a+ tb) # A(a + tb)] < (d + 1)6.

Assuming the above event does not occur, if we compute a polynomial h(t)
of degree < d, such that h(t) = A(a + tb) for every t € {1,2,...,d + 1}. Then,
Vt, h(t) = f,3(t). Once we have this, we can compute h(0), which gives us the
value of f at a.

In this manner, using a subroutine algorithm that computes the permanent
on most points, we can get an algorithm that evaluates the permanent on worst
case inputs with high probability.

16-2

5 Restriction of f to a Curve

Say we are interested in the value of the function f at 5 points. Just as in the
case of 1 point, where we drew a line, we draw a curve in the space through
those 5 points, and through a randomly chosen sixth point.
We know that a line l;; : F — F™ is a concatenation of m functions -
1@t
ab’ab 0 ah
Similarly, a curve C' : F — F™ is a concatenation of m functions - CW, 2 ... C™) .
F — I, each of which is a univariate polynomial, and degree(C) = maxlggm{degreeC(i)}.
Given k + 1 points, 3 a degree k curve through them.
If f:F™ — F is of degree d, then f|. : F — F is of degree < kd, where
fle(t) = fle(t))-
We now put these ideas together to give an interactive proof for the perma-
nent.

:F — T, each of which is a univariate polynomial of degree 1.

6 Permanent C IP

We can use the same general type of idea to calculate the permanent. Let the
permanent language Lpe,n, be defined as follows.

Definition 1 Lyerm = {(M,a)la = perm(M)}, where M is a matriz in Zy*"
for some n and p prime.

We want to show this language is in IP. That is, we have to describe an
algorithm by which the prover can convince the verifier a pair (M, a) is indeed
in Lperm. Let M; be the it minor of M. Then we know that

perm(M) = Z ay;perm(M;)
i=1

So instead of giving an answer for the n x n permanent of M, we can check
all n of the (n — 1) x (n — 1) permanents of the minors. Just like before, the

prover can compute a curve C going through M ... M, in Z;,"_l)x(n_l). The
curve can be described using (n — 1)? functions in one variable (one for each
coordinate), each of which has degree n.

So, the prover sends to the verifier C, which is a function from Z, to
Zénfl)x(nfl), and P, which is a function from Z, to Z,. The prover claims
that C' is in fact a curve through M; and P is the permanent restricted to that
curve, i.e. P(i) = perm(M;). Now the verifier has to check that this is true.
The verifier can easily check if C(i) = M; (since that depends on (n — 1)? poly-
nomials, each of degree n) and if a = Y. | a1;p(i). If either of these is false,
the verifier rejects.

Let’s see if this works. If the prover is honest and perm(M) = a, then the
verifier won’t reject. Suppose perm(M) # a. Then either the verifier will reject,

16-3

or the prover will have to lie. The prover will have to give a P that is not equal
to the permanent on C.

Suppose that happens. Certainly there does exist some P’ that is equal to
the permanent on C. If P # P’ then they differ almost everywhere (being
degree n polynomials). So the verifier can pick a random tg € Z, and ask for
proof that (C(to), P(to)) is in Lperm,. This is the same type of problem as we
started with, except that now it’s about a matrix of size (n — 1)? instead of size
n?. Iterating this process n times, eventually we reach a question about a 1 x 1
matrix’s permanent, which is easy to calculate.

Question from the audience: We're assuming p is really big. What if it’s
smaller?

Well, if p = 2, then the permanent equals the determinant (since —1 = 1),
and it’d not difficult to calculate. If p = 3, then it’s essentially the same as
PARITY — SAT. Also, in general, for small p we can use an extension field of
characteristic p in the above algorithm.

Soundness analysis: If (M, a) ¢ Lperm, then

P’I"to[(C(t()),P(tO) S Lperm] S Tl2/p

. That’s just for one iteration. Since there are n iterations, the union bound
gives
Prlacceptance] < n®/p

Choosing a p big enough makes that probability as small as you like.

7 Towards IP C PSPACE

Here’s a very abstract notion of a problem for which we want to prove things:

Definition 2 Let n, d, p prime, and w be fized. Suppose we have pi...py
such that, for all i, p;(x1 ... x,) is a multivariate polynomial of n variables with
degree < d. This is a polynomial computation sequence if, for all i > 1, p; can
be computed at any point by making < w oracle calls to p;—1, and if py can be
computed efficiently.

Then the algorithm we described above for computing the permanent can
also be used to prove interactively that p, (a1 ...a,) = b. All you’d have to do
is ask the prover to give p; restricted to C, where C is a curve through all w
points needed for oracle calls (P; is like the permanent of an ¢ x ¢ matrix and
the w points are like the minors).

And guess what? PSPACE can be described by rules like this. Suppose
we’re thinking of a space n computation. Let Fj(ay ...as, b1 ...bs), where a and
b are configurations, be 1 if it is possible to reach configuration b within 2¢ steps,
beginning with configuration a, and 0 otherwise.

Since we’re dealing with a space bounded computation, there are at most 2°
steps in any computation before it begins looping. So to check if a particular
string is accepted by this computation, we need only calculate F;(a, b), setting

16-4

a to be the starting configuration given that string, b to be the accepting config-
uration (WLOG we may assume there is exactly one accepting configuration),
and ¢ = s.

Furthermore, we note that F;(a@,b) = 1 if and only if there exists ¢ such that
Fi,1(6_175) = Fifl(é, B) = 1. So in fact

Fact 3 Fi(a,b) = Y .cqo,1y- Fi-1(a,0) - Fi-1(E,b)

It would be great if these were all low-degree multivariate polynomials. And
they are! Note that the above recursion implies that for each a; (b;), the degree
of a; (b;) in F; is the degree of a; (b;) in F;_;. Since the degree is bounded for
i =0, it is bounded in general.

We're almost all set. We now have a bunch of low-degree polynomials, just
like before. But we're summing over all exponentially many possible ¢. This
could be a problem. In the next lecture, we’ll see what do.

16-5

