
6.841 Advanced Complexity Theory April 11, 2007

Lecture 17
Lecturer: Madhu Sudan Scribe: Catherine Lennon

1 Today

• We will prove PSPACE ⊂ IP .

• Ramblings on knowledge.

2 Review of Polynomial Construction Sequence

As in last class, a polynomial construction sequence has the parameters
w, l, m, d, t ∈ Z and a prime p, which signify the following: t represents time,
and p1, ..., pl, is a sequence of m-variable polynomials of degree d. We work over
the field Fp of p elements and when computing pi, we are allowed at most w
oracle calls to pi−1.

We have some ā ∈ Fm, and b ∈ F. The goal is to show that pl(ā) = b. Can
this be proven with a verifier in probabilistic time poly(m, d, l, w, t, log |F|)? The
technique will be to compute this in stages, from l down to 1. At the ith phase,
the following interaction takes place:

• Known: a(i), b(i), pi(a(i)) = b(i).

• Verifier: calculates and sends vectors v1, .., vw ∈ Fm.

• Prover: sends c : F → Fm of degree w such that C(i) = vi, i ∈ {1, ..., w},
and h such that pi−1|C = h(t).

• Verifier: checks that C(i) = vi, b(i) = fi(h(1), ..., h(w)). He then chooses
t0 ∈ F uniformly at random and sends t0.

• Prover: computes pi−1(a(i−1)) = b(i−1), where a(i−1) = c(t0), and b(i−1) =
h(t0).

3 Proof

Consider the pair (M,x), of Turing machine M with input x. Let s denote the
number of bits needed to describe the configuration of (M,x). Define

Fi(σ, τ) =

 1 if σ, τ ∈ {0, 1}s and σ ⇒ τ in 2i steps;
0 if σ, τ ∈ {0, 1}s but σ does NOT ⇒ τ in 2i steps;
arbitrary otherwise.

17-1

Then Fi : {0, 1}F2s → F since it is defined on all elements of F2s, but it only
gives meaningful output on inputs in {0, 1}2s.
Claim: (not proven) F0(σ, τ) can be defined so as to be a polynomial in 2s
variables of degree C = O(1) in each variable.

Then Fi(x, y) =
∑

z∈{0,1}s Fi−1(x, z)Fi−1(z, y). Notice that there will be only
one nonzero term in the sum, corresponding to the midpoint. Also, this is a
polynomial of degree C in each variable if Fi−1 is. But there is a catch: in
order to compute Fi, we need to determine the value of Fi−1 at exponentially
many places, giving us an exponentially long sum. We will use an observation
to simplify this.

Observe that the given definition of Fi is equal to the following:

Fi(x, y) =
∑

z1∈{0,1}

∑
z2∈{0,1}

...
∑
zs

Fi−1(x, z)Fi−1(z, y)

We may only wish to consider the sum of a smaller number of the nested
summations, and this leads us to define for convenience the following func-
tions: let Gi,j(x, y, z1, ..., zj) :=

∑
zj+1

...
∑

zs
Fi−1(x, z)Fi−1(y, z). Then in par-

ticular, Gi,j(x, y, z1, .., zj) = Gi,j+1(x, y, z1, ..., zj , 0) + Gi,j+1(x, y, z1, ..., zj , 1),
and Gi,s(x, y, z1, .., zs) = Fi−1(x, z)Fi−1(z, y). Thus the sequence begins with
F0 = G0,0 and using this we may define G1,s, G1,s−1, ..., G1,0 = F1, etc until
finally we have computed Gs,0 = Fs and we are done.

An interesting detail is that the inputs we were given was (M,x), but where
were these used in the proof? The machine M affects F0 and the input x affects
Fs, but all of the intermediate computation steps are oblivious to the problem
involved.

4 Comments about IP

We often wish to show that some problems are not very hard. For example,
say we have a language L, and we wish to determine if L is NP-complete. If
we can show that its complement L̄ ∈ AM then under the infinite hierarchy
assumption, L cannot be NP-complete. Although IP , AM do not seem to be
such different complexity classes, the equivalent statement using IP instead of
AM is not true. Thus IP and AM are far more different than they may appear
at first glance.

Another use for IP is studying knowledge and secrecy. For more about this,
take 6.875, 6.876. We will not go into detail on these topics in this course, but
we will briefly discuss the concept of knowledge.

4.1 Shannon’s Theory of Information

One question that was asked is how can someone measure information. To Shan-
non, tossing an unbiased coin n times independently generates n bits of “infor-
mation”. However, this does not really capture the “real life” meaning of the

17-2

term “information”. To remedy this, we introduce the concept of “knowledge”-
in this context, the n random coin tosses do not contain any bits of knowledge,
so this comes closer to the usual notion.

Example: If I pick random n-bit primes P,Q, and send N = PQ to you, we
claim that you do not know P or Q. But how do we define “knowing”?

4.2 Graph Isomorphism Protocol

This concept was formalized by Goldwasser, Micali, and Rackoff by developing
what are called zero-knowledge proofs. Before we define this formally, con-
sider the following protocol for proving that two graphs G1, G2 are isomorphic.
Graphs G1, G2 are known to the Prover and Verifier. The prover knows π0

where π0(G1) = G2 is an isomorphism. She wishes to prove that G1 ≈ G2 to
the Verifier without revealing anything about the isomorphism. The protocol
works as follows:

• Prover: picks i ∈ {1, 2}, π ∈ Sn and sends the graph H = π(Gi).

• Verifier: chooses a challenge bit b ∈ {0, 1} and sends it.

• Prover: if b = i, she sends π, if b = 1, i = 2, she sends π ◦π0, and if b = 2,
i = 1, she sends π ◦ π−1.

• Verifer: checks that this is in fact an isomorphism from Gb to H.

Intuitively, this protocol has the following properties:
Completeness: if G1 ≈ G2, then V ↔ P always accepts.
Soundness: if G1, G2 are nonisomorphic, then it rejects with high probability.
Zero-Knowledge: of G1 ≈ G2, the verifier learns nothing other than this fact.

4.3 Zero-Knowledge Proofs

In order to formalize these concepts, [GMR] introduced the concepts of simula-
tors and transcripts. A transcript is a sequence of strings, which is a random
variable even if we fix the verifier’s random coins R, and it has a distribution DR.

Claim: we can sample strings from this distribution.

In the case of the above example, we sampled from the distributions exactly,
and our transcript was H, b, π. Such a protocol is a Perfect Zero Knowledge pro-
tocol. However, we may not be able to sample exactly, and so we define weaker
concepts of zero-knowledge protocols. If the simulator produces a D′ 6= D define
the “statistical distance” of these two distributions to be

||D′ −D|| := 1
2

∑
x

|D′(x)−D(x)|

17-3

Equivalently, if we fix any T : {0, 1}n → {0, 1}, then max |Prx∈D[T (x) = 1] −
Prx∈D′ [T (x) = 1]| = ||D′ − D||. A Statistical Zero-Knowledge proof is one
where ||Dprover −Dsimulator|| ≤

1
nc ∀c.

Finally, we also have the concept of Computational Zero-Knowledge proofs,
where we define a new distance

||D′ −D||comp = max
T a poly-sized circuit

|Pr[T (D) = 1]− Pr[T (D′) = 1]|

.

4.4 Results

Following the formulation of PZK, SZK,CZK, the following results were proven

• Goldreich, Micali, Wigderson showed that graph isomorphism is in PZK ⊂
SZK ⊂ CZK.

• if L ∈ SZK and L is NP-complete, then the hierarchy collapses.

• Okamoto showed that SZK = coSZK

• Vadhu showed that if L1, L2 ∈ CZK, then L1 ∪ L2 ∈ CZK

17-4

