6.841 Advanced Complexity Theory April, 23, 2007

Lecture 19
Lecturer: Madhu Sudan Scribe: Kuen-Bang Hou and Ning Xie

Today we will continue our study of PCP’s and show an exponentially long PCP for SAT.

1 Review of last lecture: two views of PCP

First we review some results covered in last lecture: there are two different views to look at PCP systems.
The first view is to treat PCP as a proof system having the following special property. There exists a
probabilistic polynomial time proof verifier V' for L such that:

e rc€L=3rst Prr[V™(z,R)] =1
e 1 ¢ L=Vr Prg[V™(x,R)] <1—F¢,

where || should be small, € > 0 is a constant and #queries into 7 should be small (e.g. O(1)).

m]| || || |

input x random coin tosses R

Figure 1: Relationship among the proof 7, the input z, the random coin tosses R and the verifier V'

The second view is to think PCP as a reduction from L to the problem of Generalized Graph k-coloring
such that:

e r € L, — (G, is k-colorable;
e © ¢ L = Vk-coloring of G, at least e fraction of the edges are invalid coloring in G.

Note that if |7| is polynomially bounded, these two views are equivalent. However, today we are going to
see an exponentially long proof verifiable by O(1) queries. This is trivial in View 2 but is highly non-trivial
in View 1.

2 PCP system for Quadratic-SAT

2.1 Quadratic-SAT
Definition 1 (Quadratic-SAT) Consider the following decision problem, which is a variant of SAT:

Given: x1,...,x, € GF(2) and a set of m degree-2 polynomials Py, - , Py, in n variable;
Question : Does there exist an a = (a1, ...,a,) € GF(2)" such that for all j € {1,...,m} Pj(a)=07?

19-1

It is easy to see that Quadratic-SAT € NP. It can also be checked that Quadratic-SAT is NP-hard'.
Therefore it is NP-complete. In the following we will describe an exponentially long PCP for Quadratic-
SAT. The key ideas will be arithmetization of SAT and exploiting some nice properties of linear functions
(low-degree polynomials).

2.2 What is the proof

Let @ be a degree-2 polynomials in n variables over GF(2). Then Q(z1,...,2z,) = Elgi,jgn qi,jT:T5 + qo-
Since we are working over GF(2), 22 = z and this general form includes all the linear functions as well. Note
that a quadratic polynomial over GF(2) is completely determined by the set of coefficients: @ = ({gi,; }, q0)-
It follows that the total number of degree-2 polynomials in n variables over GF(2) is 20("*) Now our proof
7w for the PCP system is simply the list of the evaluations of a satisfying assignment a at all quadratic
polynomials. Therefore || = 20(n?),

2.3 What should be checked for the proof

There are two issues to address. First, m may not equal to {Q(a)} for any a. Second, a may not be a
satisfying assignment.

e Syntactic Question: Does there exist an a such that 7[Q] = Q(a) for all Q7

Since the number of quadratic polynomials is exponentially large and an invalid proof may be formed
by flip only one bit from a valid proof, this is not possible to check in polynomial time. Instead, we
relax the question to: Does there exist an a such that Prg [7[Q] = Q(a)] > 1—§7 Note that even after
the relaxation there can be only one a that passes the check provided that ¢ is small enough.

e Semantic Question: Is Pi(a) = Py(a)=---=P,(a) =07

We will study the semantic question first since it is easier and then come back to handle the syntactic
question later.

2.4 Semantic test

Now we assume that the proof 7 already passes the Syntactic test; i.e., we are given a table m which encodes
the evaluation of some a at all the quadratic polynomials such that for at least 1 — ¢ fraction of the points,
m[Q] = Q(a). We want to test if a is a satisfying assignment for Quadratic-SAT by probing the table only
at a constant number of locations.

We start with the easiest case: Suppose that there is only one polynomial P; (i.e. m = 1). Note that
we can not just read 7w[Pj] since that point may be in the corrupted portion of the proof. Instead, we
use the idea of random self-reducibility introduced before: Pick another polynomial @ at random, compute
7~T[P1]d=ef7r[P1 + Q] — 7[Q] and check if it is 0. The key point here is that, for any fixed P, if @ is a
random quadratic polynomial, then so is P; + Q. Therefore, Prg[n[Q] # Q(a)] < § and Prg[r[P1 + Q] #
Pi(a) + Q(a)] <9, applying union bound gives Prg[7[P1] # Pi(a)] < 20.

For general m, we can not repeat the above test for every P;, since we are only allowed to query constant
bits. We will use the idea of approximating OR gates by probabilistic low-degree polynomials in Razborov-
Smolensky’s proof of circuit lower bound for PARITY. Here our task is to check if /\jm:1(Pj (a) =0).

1. pick ag, ..., am, € GF(2) uniformly at random;

2. check if P, (z1,... ,acn)déf Z;”:l a;Pj(z1,...,x,) evaluates to 0 at point a.

INote that if we map 1 to TRUE and map 0 to FALSE, then the AND gate and OR gate can be expressed by quadratic
polynomials over GF(2) as AND(z,y) = -y and OR(z,y) = 2 + y + = - y. Consider the following reduction from 3SAT to
Quadratic-SAT. Let ¢ € 3SAT. For each clause ¢; = (z; Vy; V2;) in ¢ (note that the complement of x is mapped to (1 —z) and
this will not increase the degree), build two polynomials Pa;, Pajy1 as Po; = x; +y; +xiyi +w; and Paj11 = 2z; +w; + zjw; + 1.
This construction introduces at most a polynomial number of new variables and it is easily seen that Ps; = P41 = 0 if and
only if ¢; = ($1 VyiV Zl) = TRUE.

19-2

Analysis: Note that P, is a degree-2 polynomial in x1,...,z,. It is easy to see that, if for all j € [m)]

Pj(a) = 0, then P,(a) = 0. On the other hand, if there exists a j such that P;(a) # 0, then P, is a non-

vanishing multilinear polynomial in a1, ..., ay,. By Schwartz-Zippel Lemma, Pro, . q,. [Pa(a) # 0] > %
Now we combine these two ideas together and get the following Semantic Test:

Semantic Test: Is Pi(a) = Px(a) =--- = Pp,(a) =07
e pick aq,...,q,; € GF(2) uniformly at random
o set Py =) 00 ;P

e pick @ randomly from the set of quadratic polynomials

e accept if 7[Q + P,] = 7[Q]

2.5 Syntactic test

Now we come back to the first test. Recall that our task is, given a proof 7, to test if there exists an a such
that Pro[n[Q] = Q(a)] < ¢. The idea is to look for structural properties of such a proof 7 and test for them.
Observe that quadratic function evaluation satisfies the linearity property: n[Q1] + 7[Q2] = 7[Q1 + Q2] for
all @1 and Q2. Conversely, for any 7 satisfying that

VQ1, Q2, T[Q1] + 7[Q2] = T[Q1 + Q2],

there exist {b; ;};2 ;_; and bo such that for all Q = ({gi;}, 90), 7[Q] = >_ gi,;bi,; + qobo.
Therefore we break the Syntactic Test into two parts: First we test if the proof m passes the linearity
test, then we check if

e b;; = a;a; for all i and j, and

e by = 1.

2.5.1 The First Part of the Syntactic Test

We've already used the idea Q1(a)+Q2(a) = (Q1+Q2)(a) in the previous test. Here we are going to use that
idea again. Our linearity test is simply the following: Pick @1, Q2 at random and check if 7[@Q1] + 7[Q2] =
m[Q1 + Q2]

If the proof m passes the test, however, we can only conclude that Prqg, o, [7[Q1] + 7[Q2] = 7[Q1 + Q2]]
is high, which is far from the statement that for all Q1,Q2, 7[Q1] + 7[Q2] = 7[Q1 + Q2]. Fortunately,
this property guarantees that there is another proof 7 which is linear (i.e. for all Q1,Q2, 7T[Q1] + 7[Q2] =
7[Q1 + Q2]) and is very close to m. The existence of such 7 is stated formally in the following remarkable
theorem of Blum, Luby and Rubinfeld:

Theorem 2 (BLR Theorem) If Pr[r[Q1] + 7[Qa] # 7[Q1 + Q2)] < 8 then
1. 37 such that YQ1, Q2 : T[Q1] + T[Q2] = T[Q1 + Q2] and
2. Prolr|Q] # 7[Q]] < 26

provided that § < 2/9.

We will not prove this theorem here. Interested readers are referred to the two courses taught by Prof.
Rubinfeld: 6.895 Randomness and Computation and 6.896 Sublinear Time Algorithms.

The proof is in [BLR90]. The constant 2/9 is important because we're only allowed to use a constant
number of queries, and the soundness bound 2/9 is achievable by a constant number of queries.

19-3

2.5.2 The Second Part of the Syntactic Test

It remains to test the following: Are b’s generated from some assignment a such by = 1 and b; ; = a;a; if
we write the value of 7[Q] as > ¢; ;bij + qobo? Keep in mind that we are only given a proof 7 which may
disagree with 7 on 26 fraction of the points.

1. Is by = 17 Define the polynomial 1 to be {{0},1}, then 1(ay,...,a,) = by. Using the same idea we
used before, we pick a random @ and test if 7[Q + 1] — 7[Q] = 1.

2. Is b; j = a;a; for every i, j? This is equivalent to testing if b = {b}; ; = aa’. First we state a technical

claim.

Claim 3 Let b € GF(2)"*" and let a € GF(2)". Let u,v € GF(2)". If b # aa”l, then

Priu’bv # v’ aa’v] > 1/4.

u,v

Proof Left as an exercise to the reader. l

This claim suggests the following test: Pick u and v at random and check if u"bv = u’aa”v. The
left hand side can be read from 7[Qu.,], where Qu.o = (¢i5,90), ¢i,j = w;vj; and go = 0. But how do
we compute v7a and uTa? Instead, we ask the prover to provide the answers and we check them!
Specifically, the prover provides an appendix 7j;, where 7y, [v] = vTa for each vector v. Note that this
is just the evaluation of all linear functions at point a. Now assuming the appendix is correct, the
following test will work:
(a) pick random vectors u, v and random quadratic polynomial @

(b) test if 7[Q + Qu,»] — 7[Q] = Tin[u] - Min[v]

However, we have to make sure that the appendix is correct. As before, this can be done by picking u

and v at random and testing if
Tin[U] + Tin[v] = Tiin[u + v].

2.6 Summary

Now we have completed the description a PCP system for Quadratic-SAT. The prover provides 7 and 7y,
which are evaluations of the set of quadratic polynomials and the set of linear functions at a satisfying
assignment a. The verifier performs the following tests and accepts only if all the tests pass.

1. Test 1: Linearity of mjy
o Tiin[u] + Tiin[v] = miin[u + v]?
2. Test 2: Quadraticity of 7
(a) m[Q1] + 7[Q2] = T[Q1 + Q2]?
(b) W[Q + Qu,v] - W[Q] = Tlin ['LL] : Wlin[v]?
(c) 7@ +1] —n[Q] =17
3. Semantic Test

e pick {a1,...,a;,} at random and set P, = 37", a; P

e () «— random
e 7[Q + P,] = 7[Q]?

19-4

Analysis:
e The verifier makes 14 = O(1) number of queries to the proof
e (Jas.t. Pj(a) =0V j)= 3m, min s.t. Pr[Verifier accepts] =1
e Pr[Verifier accepts] > 0.99 = Ja s.t. Pi(a) =--- = Py,(a) =0

2.7 Exercise for the next lecture

We would like to have a reduction which has the following property: 37 > 0 such that Vk Generalized
k-coloring < Generalized 3-coloring such that

e (G, is k-colorable — G! is 3-colorable
e G, is e-far from k-colorable — G is ¢ - 7-far from 3-colorable.
Note that this is different from the classical Garey-Johnson type reduction, in which 7 is in general dependent
on k.
References
[BLR90] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical prob-

lems. In STOC ’90: Proceedings of the twenty-second annual ACM symposium on Theory of
computing, pages 73-83, New York, NY, USA, 1990. ACM Press.

19-5

