
6.841 Advanced Complexity Theory April, 23, 2007

Lecture 19

Lecturer: Madhu Sudan Scribe: Kuen-Bang Hou and Ning Xie

Today we will continue our study of PCP’s and show an exponentially long PCP for SAT.

1 Review of last lecture: two views of PCP

First we review some results covered in last lecture: there are two different views to look at PCP systems.
The first view is to treat PCP as a proof system having the following special property. There exists a
probabilistic polynomial time proof verifier V for L such that:

• x ∈ L⇒ ∃π s.t. PrR [V π(x, R)] = 1

• x /∈ L⇒ ∀π PrR [V π(x, R)] ≤ 1− ǫ,

where |π| should be small, ǫ > 0 is a constant and #queries into π should be small (e.g. O(1)).

π:

random coin tosses R

V
π

input x

Figure 1: Relationship among the proof π, the input x, the random coin tosses R and the verifier V

The second view is to think PCP as a reduction from L to the problem of Generalized Graph k-coloring
such that:

• x ∈ L =⇒ Gx is k-colorable;

• x /∈ L =⇒ ∀k-coloring of Gx, at least ǫ fraction of the edges are invalid coloring in Gx.

Note that if |π| is polynomially bounded, these two views are equivalent. However, today we are going to
see an exponentially long proof verifiable by O(1) queries. This is trivial in View 2 but is highly non-trivial
in View 1.

2 PCP system for Quadratic-SAT

2.1 Quadratic-SAT

Definition 1 (Quadratic-SAT) Consider the following decision problem, which is a variant of SAT:

Given : x1, . . . , xn ∈ GF(2) and a set of m degree-2 polynomials P1, · · · , Pm in n variable;

Question : Does there exist an a = (a1, . . . , an) ∈ GF(2)n such that for all j ∈ {1, . . . , m} Pj(a) = 0?

19-1



It is easy to see that Quadratic-SAT ∈ NP. It can also be checked that Quadratic-SAT is NP-hard1.
Therefore it is NP-complete. In the following we will describe an exponentially long PCP for Quadratic-
SAT. The key ideas will be arithmetization of SAT and exploiting some nice properties of linear functions
(low-degree polynomials).

2.2 What is the proof

Let Q be a degree-2 polynomials in n variables over GF(2). Then Q(x1, . . . , xn) =
∑

1≤i,j≤n qi,jxixj + q0.

Since we are working over GF(2), x2 = x and this general form includes all the linear functions as well. Note
that a quadratic polynomial over GF(2) is completely determined by the set of coefficients: Q ≡ ({qi,j}, q0).

It follows that the total number of degree-2 polynomials in n variables over GF(2) is 2O(n2). Now our proof
π for the PCP system is simply the list of the evaluations of a satisfying assignment a at all quadratic
polynomials. Therefore |π| = 2O(n2).

2.3 What should be checked for the proof

There are two issues to address. First, π may not equal to {Q(a)} for any a. Second, a may not be a
satisfying assignment.

• Syntactic Question: Does there exist an a such that π[Q] = Q(a) for all Q?

Since the number of quadratic polynomials is exponentially large and an invalid proof may be formed
by flip only one bit from a valid proof, this is not possible to check in polynomial time. Instead, we
relax the question to: Does there exist an a such that PrQ [π[Q] = Q(a)] ≥ 1−δ? Note that even after
the relaxation there can be only one a that passes the check provided that δ is small enough.

• Semantic Question: Is P1(a) = P2(a) = · · · = Pm(a) = 0 ?

We will study the semantic question first since it is easier and then come back to handle the syntactic
question later.

2.4 Semantic test

Now we assume that the proof π already passes the Syntactic test; i.e., we are given a table π which encodes
the evaluation of some a at all the quadratic polynomials such that for at least 1− δ fraction of the points,
π[Q] = Q(a). We want to test if a is a satisfying assignment for Quadratic-SAT by probing the table only
at a constant number of locations.

We start with the easiest case: Suppose that there is only one polynomial P1 (i.e. m = 1). Note that
we can not just read π[P1] since that point may be in the corrupted portion of the proof. Instead, we
use the idea of random self-reducibility introduced before: Pick another polynomial Q at random, compute

π̃[P1]
def
=π[P1 + Q] − π[Q] and check if it is 0. The key point here is that, for any fixed P1, if Q is a

random quadratic polynomial, then so is P1 + Q. Therefore, PrQ[π[Q] 6= Q(a)] ≤ δ and PrQ[π[P1 + Q] 6=
P1(a) + Q(a)] ≤ δ, applying union bound gives PrQ[π̃[P1] 6= P1(a)] ≤ 2δ.

For general m, we can not repeat the above test for every Pi, since we are only allowed to query constant
bits. We will use the idea of approximating OR gates by probabilistic low-degree polynomials in Razborov-
Smolensky’s proof of circuit lower bound for PARITY. Here our task is to check if

∧m

j=1(Pj(a) = 0).

1. pick α1, . . . , αm ∈ GF(2) uniformly at random;

2. check if Pα(x1, . . . , xn)
def
=

∑m

j=1 αjPj(x1, . . . , xn) evaluates to 0 at point a.

1Note that if we map 1 to True and map 0 to False, then the AND gate and OR gate can be expressed by quadratic
polynomials over GF(2) as AND(x, y) = x · y and OR(x, y) = x + y + x · y. Consider the following reduction from 3SAT to
Quadratic-SAT. Let ψ ∈ 3SAT. For each clause ci = (xi ∨yi ∨zi) in ψ (note that the complement of x is mapped to (1−x) and
this will not increase the degree), build two polynomials P2i, P2i+1 as P2i = xi + yi +xiyi +wi and P2i+1 = zi +wi + ziwi +1.
This construction introduces at most a polynomial number of new variables and it is easily seen that P2i = P2i+1 = 0 if and
only if ci = (xi ∨ yi ∨ zi) = True.
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Analysis: Note that Pα is a degree-2 polynomial in x1, . . . , xn. It is easy to see that, if for all j ∈ [m]
Pj(a) = 0, then Pα(a) = 0. On the other hand, if there exists a j such that Pj(a) 6= 0, then Pα is a non-
vanishing multilinear polynomial in α1, . . . , αm. By Schwartz-Zippel Lemma, Prα1,...,αm

[Pα(a) 6= 0] ≥ 1
2 .

Now we combine these two ideas together and get the following Semantic Test:

Semantic Test: Is P1(a) = P2(a) = · · · = Pm(a) = 0?

• pick α1, . . . , αm ∈ GF(2) uniformly at random

• set Pα =
∑m

j=1 αjPj

• pick Q randomly from the set of quadratic polynomials

• accept if π[Q + Pα] = π[Q]

2.5 Syntactic test

Now we come back to the first test. Recall that our task is, given a proof π, to test if there exists an a such
that PrQ[π[Q] = Q(a)] ≤ δ. The idea is to look for structural properties of such a proof π and test for them.
Observe that quadratic function evaluation satisfies the linearity property: π[Q1] + π[Q2] = π[Q1 + Q2] for
all Q1 and Q2. Conversely, for any π̃ satisfying that

∀Q1, Q2, π̃[Q1] + π̃[Q2] = π̃[Q1 + Q2],

there exist {bi,j}
n,n
i=1,j=1 and b0 such that for all Q = ({qi,j}, q0), π̃[Q] =

∑
qi,jbi,j + q0b0.

Therefore we break the Syntactic Test into two parts: First we test if the proof π passes the linearity
test, then we check if

• bi,j = aiaj for all i and j, and

• b0 = 1.

2.5.1 The First Part of the Syntactic Test

We’ve already used the idea Q1(a)+Q2(a) = (Q1+Q2)(a) in the previous test. Here we are going to use that
idea again. Our linearity test is simply the following: Pick Q1, Q2 at random and check if π[Q1] + π[Q2] =
π[Q1 + Q2].

If the proof π passes the test, however, we can only conclude that PrQ1,Q2
[π[Q1] + π[Q2] = π[Q1 + Q2]]

is high, which is far from the statement that for all Q1, Q2, π[Q1] + π[Q2] = π[Q1 + Q2]. Fortunately,
this property guarantees that there is another proof π̃ which is linear (i.e. for all Q1, Q2, π̃[Q1] + π̃[Q2] =
π̃[Q1 + Q2]) and is very close to π. The existence of such π̃ is stated formally in the following remarkable
theorem of Blum, Luby and Rubinfeld:

Theorem 2 (BLR Theorem) If Pr [π[Q1] + π[Q2] 6= π[Q1 + Q2]] ≤ δ then

1. ∃π̃ such that ∀Q1, Q2 : π̃[Q1] + π̃[Q2] = π̃[Q1 + Q2] and

2. PrQ[π[Q] 6= π̃[Q]] ≤ 2δ

provided that δ < 2/9.

We will not prove this theorem here. Interested readers are referred to the two courses taught by Prof.
Rubinfeld: 6.895 Randomness and Computation and 6.896 Sublinear Time Algorithms.

The proof is in [BLR90]. The constant 2/9 is important because we’re only allowed to use a constant
number of queries, and the soundness bound 2/9 is achievable by a constant number of queries.
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2.5.2 The Second Part of the Syntactic Test

It remains to test the following: Are b’s generated from some assignment a such b0 = 1 and bi,j = aiaj if
we write the value of π̃[Q] as

∑
qi,jbi,j + q0b0? Keep in mind that we are only given a proof π which may

disagree with π̃ on 2δ fraction of the points.

1. Is b0 = 1? Define the polynomial 1̄ to be {{0}, 1}, then 1̄(a1, . . . , an) = b0. Using the same idea we
used before, we pick a random Q and test if π[Q + 1̄]− π[Q] = 1.

2. Is bi,j = aiaj for every i, j? This is equivalent to testing if b = {b}i,j = aaT . First we state a technical
claim.

Claim 3 Let b ∈ GF(2)n×n and let a ∈ GF(2)n. Let u, v ∈ GF(2)n. If b 6= aaT , then

Pr
u,v

[uTbv 6= uTaaT v] ≥ 1/4.

Proof Left as an exercise to the reader.

This claim suggests the following test: Pick u and v at random and check if uTbv = uTaaT v. The
left hand side can be read from π[Qu,v], where Qu,v = (qi,j , q0), qi,j = uivj and q0 = 0. But how do
we compute vT a and uT a? Instead, we ask the prover to provide the answers and we check them!
Specifically, the prover provides an appendix πlin where πlin[v] = vTa for each vector v. Note that this
is just the evaluation of all linear functions at point a. Now assuming the appendix is correct, the
following test will work:

(a) pick random vectors u, v and random quadratic polynomial Q

(b) test if π[Q + Qu,v]− π[Q] = πlin[u] · πlin[v]

However, we have to make sure that the appendix is correct. As before, this can be done by picking u
and v at random and testing if

πlin[u] + πlin[v] = πlin[u + v].

2.6 Summary

Now we have completed the description a PCP system for Quadratic-SAT. The prover provides π and πlin,
which are evaluations of the set of quadratic polynomials and the set of linear functions at a satisfying
assignment a. The verifier performs the following tests and accepts only if all the tests pass.

1. Test 1: Linearity of πlin

• πlin[u] + πlin[v] = πlin[u + v]?

2. Test 2: Quadraticity of π

(a) π[Q1] + π[Q2] = π[Q1 + Q2]?

(b) π[Q + Qu,v]− π[Q] = πlin[u] · πlin[v]?

(c) π[Q + 1̄]− π[Q] = 1?

3. Semantic Test

• pick {α1, . . . , αm} at random and set Pα =
∑m

j=1 αjPj

• Q← random

• π[Q + Pα] = π[Q]?
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Analysis:

• The verifier makes 14 = O(1) number of queries to the proof

• (∃a s.t. Pj(a) = 0 ∀ j)⇒ ∃π, πlin s.t. Pr[Verifier accepts] = 1

• Pr[Verifier accepts] ≥ 0.99⇒ ∃a s.t. P1(a) = · · · = Pm(a) = 0

2.7 Exercise for the next lecture

We would like to have a reduction which has the following property: ∃τ > 0 such that ∀k Generalized
k-coloring ≤ Generalized 3-coloring such that

• Gx is k-colorable → G′
x is 3-colorable

• Gx is ǫ-far from k-colorable → G′
x is ǫ · τ -far from 3-colorable.

Note that this is different from the classical Garey-Johnson type reduction, in which τ is in general dependent
on k.
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