6.841 Advanced Complexity Theory	April, 23, 2007
Lecture 19	
Lecturer: Madhu Sudan	Scribe: Kuen-Bang Hou and Ning Xie

Today we will continue our study of PCP's and show an exponentially long PCP for SAT.

1 Review of last lecture: two views of PCP

First we review some results covered in last lecture: there are two different views to look at PCP systems. The first view is to treat PCP as a proof system having the following special property. There exists a probabilistic polynomial time proof verifier V for L such that:

- $x \in L \Rightarrow \exists \pi \text{ s.t. } \Pr_R[V^{\pi}(x, R)] = 1$
- $x \notin L \Rightarrow \forall \pi \operatorname{Pr}_R [V^{\pi}(x, R)] \leq 1 \epsilon$,

where $|\pi|$ should be small, $\epsilon > 0$ is a constant and #queries into π should be small (e.g. O(1)).

Figure 1: Relationship among the proof π , the input x, the random coin tosses R and the verifier V

The second view is to think PCP as a reduction from L to the problem of Generalized Graph k-coloring such that:

- $x \in L \Longrightarrow G_x$ is k-colorable;
- $x \notin L \Longrightarrow \forall k$ -coloring of G_x , at least ϵ fraction of the edges are invalid coloring in G_x .

Note that if $|\pi|$ is polynomially bounded, these two views are equivalent. However, today we are going to see an exponentially long proof verifiable by O(1) queries. This is trivial in View 2 but is highly non-trivial in View 1.

2 PCP system for Quadratic-SAT

2.1 Quadratic-SAT

Definition 1 (Quadratic-SAT) Consider the following decision problem, which is a variant of SAT:

Given : $x_1, \ldots, x_n \in GF(2)$ and a set of *m* degree-2 polynomials P_1, \cdots, P_m in *n* variable; **Question** : Does there exist an $\mathbf{a} = (a_1, \ldots, a_n) \in GF(2)^n$ such that for all $j \in \{1, \ldots, m\}$ $P_j(\mathbf{a}) = 0$? It is easy to see that Quadratic-SAT \in NP. It can also be checked that Quadratic-SAT is NP-hard¹. Therefore it is NP-complete. In the following we will describe an exponentially long PCP for Quadratic-SAT. The key ideas will be arithmetization of SAT and exploiting some nice properties of linear functions (low-degree polynomials).

2.2 What is the proof

Let Q be a degree-2 polynomials in n variables over GF(2). Then $Q(x_1, \ldots, x_n) = \sum_{1 \le i,j \le n} q_{i,j} x_i x_j + q_0$. Since we are working over GF(2), $x^2 = x$ and this general form includes all the linear functions as well. Note that a quadratic polynomial over GF(2) is completely determined by the set of coefficients: $Q \equiv (\{q_{i,j}\}, q_0)$. It follows that the total number of degree-2 polynomials in n variables over GF(2) is $2^{O(n^2)}$. Now our proof π for the PCP system is simply the list of the evaluations of a satisfying assignment **a** at all quadratic polynomials. Therefore $|\pi| = 2^{O(n^2)}$.

2.3 What should be checked for the proof

There are two issues to address. First, π may not equal to $\{Q(\mathbf{a})\}\$ for any \mathbf{a} . Second, \mathbf{a} may not be a satisfying assignment.

• Syntactic Question: Does there exist an **a** such that $\pi[Q] = Q(\mathbf{a})$ for all Q?

Since the number of quadratic polynomials is exponentially large and an invalid proof may be formed by flip only one bit from a valid proof, this is not possible to check in polynomial time. Instead, we relax the question to: Does there exist an **a** such that $\Pr_Q[\pi[Q] = Q(\mathbf{a})] \ge 1 - \delta$? Note that even after the relaxation there can be only one **a** that passes the check provided that δ is small enough.

• Semantic Question: Is $P_1(\mathbf{a}) = P_2(\mathbf{a}) = \cdots = P_m(\mathbf{a}) = 0$?

We will study the semantic question first since it is easier and then come back to handle the syntactic question later.

2.4 Semantic test

Now we assume that the proof π already passes the Syntactic test; i.e., we are given a table π which encodes the evaluation of some **a** at all the quadratic polynomials such that for at least $1 - \delta$ fraction of the points, $\pi[Q] = Q(\mathbf{a})$. We want to test if **a** is a satisfying assignment for Quadratic-SAT by probing the table only at a constant number of locations.

We start with the easiest case: Suppose that there is only one polynomial P_1 (i.e. m = 1). Note that we can not just read $\pi[P_1]$ since that point may be in the corrupted portion of the proof. Instead, we use the idea of random self-reducibility introduced before: Pick another polynomial Q at random, compute $\tilde{\pi}[P_1]^{\text{def}}\pi[P_1 + Q] - \pi[Q]$ and check if it is 0. The key point here is that, for any fixed P_1 , if Q is a random quadratic polynomial, then so is $P_1 + Q$. Therefore, $\Pr_Q[\pi[Q] \neq Q(\mathbf{a})] \leq \delta$ and $\Pr_Q[\pi[P_1 + Q] \neq$ $P_1(\mathbf{a}) + Q(\mathbf{a})] \leq \delta$, applying union bound gives $\Pr_Q[\tilde{\pi}[P_1] \neq P_1(\mathbf{a})] \leq 2\delta$.

For general m, we can not repeat the above test for every P_i , since we are only allowed to query constant bits. We will use the idea of approximating OR gates by probabilistic low-degree polynomials in Razborov-Smolensky's proof of circuit lower bound for PARITY. Here our task is to check if $\bigwedge_{i=1}^{m} (P_i(\mathbf{a}) = 0)$.

- 1. pick $\alpha_1, \ldots, \alpha_m \in GF(2)$ uniformly at random;
- 2. check if $P_{\alpha}(x_1, \ldots, x_n) \stackrel{\text{def}}{=} \sum_{j=1}^m \alpha_j P_j(x_1, \ldots, x_n)$ evaluates to 0 at point **a**.

¹Note that if we map 1 to TRUE and map 0 to FALSE, then the AND gate and OR gate can be expressed by quadratic polynomials over GF(2) as AND(x, y) = $x \cdot y$ and OR(x, y) = $x + y + x \cdot y$. Consider the following reduction from 3SAT to Quadratic-SAT. Let $\psi \in$ 3SAT. For each clause $c_i = (x_i \lor y_i \lor z_i)$ in ψ (note that the complement of x is mapped to (1-x) and this will not increase the degree), build two polynomials P_{2i}, P_{2i+1} as $P_{2i} = x_i + y_i + x_i y_i + w_i$ and $P_{2i+1} = z_i + w_i + z_i w_i + 1$. This construction introduces at most a polynomial number of new variables and it is easily seen that $P_{2i} = P_{2i+1} = 0$ if and only if $c_i = (x_i \lor y_i \lor z_i) =$ TRUE.

Analysis: Note that P_{α} is a degree-2 polynomial in x_1, \ldots, x_n . It is easy to see that, if for all $j \in [m]$ $P_j(\mathbf{a}) = 0$, then $P_{\alpha}(\mathbf{a}) = 0$. On the other hand, if there exists a j such that $P_j(\mathbf{a}) \neq 0$, then P_{α} is a non-vanishing multilinear polynomial in $\alpha_1, \ldots, \alpha_m$. By Schwartz-Zippel Lemma, $\Pr_{\alpha_1,\ldots,\alpha_m}[P_{\alpha}(\mathbf{a}) \neq 0] \geq \frac{1}{2}$.

Now we combine these two ideas together and get the following Semantic Test:

2.5 Syntactic test

Now we come back to the first test. Recall that our task is, given a proof π , to test if there exists an **a** such that $\Pr_Q[\pi[Q] = Q(\mathbf{a})] \leq \delta$. The idea is to look for structural properties of such a proof π and test for them. Observe that quadratic function evaluation satisfies the linearity property: $\pi[Q_1] + \pi[Q_2] = \pi[Q_1 + Q_2]$ for all Q_1 and Q_2 . Conversely, for any $\tilde{\pi}$ satisfying that

$$\forall Q_1, Q_2, \tilde{\pi}[Q_1] + \tilde{\pi}[Q_2] = \tilde{\pi}[Q_1 + Q_2],$$

there exist $\{b_{i,j}\}_{i=1,j=1}^{n,n}$ and b_0 such that for all $Q = (\{q_{i,j}\}, q_0), \ \tilde{\pi}[Q] = \sum q_{i,j} b_{i,j} + q_0 b_0.$

Therefore we break the Syntactic Test into two parts: First we test if the proof π passes the linearity test, then we check if

- $b_{i,j} = a_i a_j$ for all *i* and *j*, and
- $b_0 = 1$.

2.5.1 The First Part of the Syntactic Test

We've already used the idea $Q_1(a) + Q_2(a) = (Q_1 + Q_2)(a)$ in the previous test. Here we are going to use that idea again. Our linearity test is simply the following: Pick Q_1 , Q_2 at random and check if $\pi[Q_1] + \pi[Q_2] = \pi[Q_1 + Q_2]$.

If the proof π passes the test, however, we can only conclude that $\Pr_{Q_1,Q_2}[\pi[Q_1] + \pi[Q_2] = \pi[Q_1 + Q_2]]$ is high, which is far from the statement that for all $Q_1, Q_2, \pi[Q_1] + \pi[Q_2] = \pi[Q_1 + Q_2]$. Fortunately, this property guarantees that there is another proof $\tilde{\pi}$ which is linear (i.e. for all $Q_1, Q_2, \tilde{\pi}[Q_1] + \tilde{\pi}[Q_2] = \tilde{\pi}[Q_1 + Q_2]$) and is very close to π . The existence of such $\tilde{\pi}$ is stated formally in the following remarkable theorem of Blum, Luby and Rubinfeld:

Theorem 2 (BLR Theorem) If $\Pr[\pi[Q_1] + \pi[Q_2] \neq \pi[Q_1 + Q_2]] \leq \delta$ then

- 1. $\exists \tilde{\pi} \text{ such that } \forall Q_1, Q_2 : \tilde{\pi}[Q_1] + \tilde{\pi}[Q_2] = \tilde{\pi}[Q_1 + Q_2] \text{ and }$
- 2. $\Pr_Q[\pi[Q] \neq \tilde{\pi}[Q]] \leq 2\delta$

provided that $\delta < 2/9$.

We will not prove this theorem here. Interested readers are referred to the two courses taught by Prof. Rubinfeld: 6.895 Randomness and Computation and 6.896 Sublinear Time Algorithms.

The proof is in [BLR90]. The constant 2/9 is important because we're only allowed to use a constant number of queries, and the soundness bound 2/9 is achievable by a constant number of queries.

2.5.2 The Second Part of the Syntactic Test

It remains to test the following: Are b's generated from some assignment **a** such $b_0 = 1$ and $b_{i,j} = a_i a_j$ if we write the value of $\tilde{\pi}[Q]$ as $\sum q_{i,j} b_{i,j} + q_0 b_0$? Keep in mind that we are only given a proof π which may disagree with $\tilde{\pi}$ on 2δ fraction of the points.

- 1. Is $b_0 = 1$? Define the polynomial $\overline{1}$ to be $\{\{0\}, 1\}$, then $\overline{1}(a_1, \ldots, a_n) = b_0$. Using the same idea we used before, we pick a random Q and test if $\pi[Q + \overline{1}] \pi[Q] = 1$.
- 2. Is $b_{i,j} = a_i a_j$ for every i, j? This is equivalent to testing if $\mathbf{b} = \{b\}_{i,j} = \mathbf{a}\mathbf{a}^T$. First we state a technical claim.

Claim 3 Let $\mathbf{b} \in \mathrm{GF}(2)^{n \times n}$ and let $\mathbf{a} \in \mathrm{GF}(2)^n$. Let $u, v \in \mathrm{GF}(2)^n$. If $\mathbf{b} \neq \mathbf{a}\mathbf{a}^T$, then

$$\Pr_{u,v}[u^T \mathbf{b}v \neq u^T \mathbf{a} \mathbf{a}^T v] \ge 1/4.$$

Proof Left as an exercise to the reader.

This claim suggests the following test: Pick u and v at random and check if $u^T \mathbf{b} v = u^T \mathbf{a} \mathbf{a}^T v$. The left hand side can be read from $\pi[Q_{u,v}]$, where $Q_{u,v} = (q_{i,j}, q_0)$, $q_{i,j} = u_i v_j$ and $q_0 = 0$. But how do we compute $v^T a$ and $u^T a$? Instead, we ask the prover to provide the answers and we check them! Specifically, the prover provides an appendix π_{lin} where $\pi_{\text{lin}}[v] = v^T \mathbf{a}$ for each vector v. Note that this is just the evaluation of all linear functions at point \mathbf{a} . Now assuming the appendix is correct, the following test will work:

- (a) pick random vectors u, v and random quadratic polynomial Q
- (b) test if $\pi[Q + Q_{u,v}] \pi[Q] = \pi_{\ln}[u] \cdot \pi_{\ln}[v]$

However, we have to make sure that the appendix is correct. As before, this can be done by picking u and v at random and testing if

$$\pi_{\rm lin}[u] + \pi_{\rm lin}[v] = \pi_{\rm lin}[u+v].$$

2.6 Summary

Now we have completed the description a PCP system for Quadratic-SAT. The prover provides π and π_{lin} , which are evaluations of the set of quadratic polynomials and the set of linear functions at a satisfying assignment **a**. The verifier performs the following tests and accepts only if all the tests pass.

- 1. Test 1: Linearity of π_{lin}
 - $\pi_{\text{lin}}[u] + \pi_{\text{lin}}[v] = \pi_{\text{lin}}[u+v]?$
- 2. Test 2: Quadraticity of π
 - (a) $\pi[Q_1] + \pi[Q_2] = \pi[Q_1 + Q_2]?$
 - (b) $\pi[Q + Q_{u,v}] \pi[Q] = \pi_{\text{lin}}[u] \cdot \pi_{\text{lin}}[v]$?
 - (c) $\pi[Q + \bar{1}] \pi[Q] = 1?$

3. Semantic Test

- pick $\{\alpha_1, \ldots, \alpha_m\}$ at random and set $P_{\alpha} = \sum_{j=1}^m \alpha_j P_j$
- $Q \leftarrow \text{random}$
- $\pi[Q+P_{\alpha}]=\pi[Q]?$

Analysis:

- The verifier makes 14 = O(1) number of queries to the proof
- $(\exists \mathbf{a} \text{ s.t. } P_j(\mathbf{a}) = 0 \forall j) \Rightarrow \exists \pi, \pi_{\text{lin}} \text{ s.t. } \Pr[\text{Verifier accepts}] = 1$
- $\Pr[\text{Verifier accepts}] \ge 0.99 \Rightarrow \exists \mathbf{a} \text{ s.t. } P_1(\mathbf{a}) = \cdots = P_m(\mathbf{a}) = 0$

2.7 Exercise for the next lecture

We would like to have a reduction which has the following property: $\exists \tau > 0$ such that $\forall k$ Generalized k-coloring \leq Generalized 3-coloring such that

- G_x is k-colorable $\rightarrow G'_x$ is 3-colorable
- G_x is ϵ -far from k-colorable $\rightarrow G'_x$ is $\epsilon \cdot \tau$ -far from 3-colorable.

Note that this is different from the classical Garey-Johnson type reduction, in which τ is in general dependent on k.

References

[BLR90] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical problems. In STOC '90: Proceedings of the twenty-second annual ACM symposium on Theory of computing, pages 73–83, New York, NY, USA, 1990. ACM Press.