6.841 Advanced Complexity Theory April 25, 2007

Lecture 20
Lecturer: Madhu Sudan Scribe: Alex Schwendner

1 Generalized r-Graph k-coloring

Our goal for this lecture is to prove the PCP Theorem using Dinur’s proof by Gap Amplifica-
tion [Din06]. For this, we’ll be using our second view of PCPs, namely Generalized Graph Coloring.

For a given triple (k,r,€), the Generalized r-Graph k-coloring problem consists of a graph (V, E)
along with a notion of which colorings are valid for each hyper-edge:

G = (V,E,valid: E x [k]" — {0,1})
FCVXxVx---xV
~—— —

r-times

We define a k-coloring to be an assignment of one of k colors to each vertex: x : V. — {1,... k}.
For a coloring x, we call an edge e = (v1,...,v,) satisfied if valid(e, x(v1),...,x(v.)) = 1. The
graph G is then called k-colorable if there exists a coloring x such that all edges are satisfied.

We consider the promise problem for which we want to accept if G is k-colorable, and reject if
at least an e fraction of the edges are unsatisfied in any coloring of G. If we define

|{e € E | e not satisfied by x}
Bl

unsat(G) = min {unsat, (G)}
X

unsat, (G) =

then we can specify that we wish to reject G if unsat(G) > e.

2 Reductions

2.1 Definition

We define a reduction (k,r,e) — (k’,7,€’) to be a linear-time reduction mapping an r-graph G
to an r’-graph G’ such that if G is k-colorable, then G’ is k’-colorable, and if unsat(G) > € then
unsat G’ > €:

r-graph G — ¢’-graph G’
G k-colorable = G’ k’-colorable
unsat(G@) > e = unsat(G') > ¢

20-1

2.2 Classical Reductions
Here are some easy classical (or neo-classical) reductions:

1. (k,r) — (2,rlogk, €) — Here, we replace each vertex with log k vertices with binary colors
that encode the previous (log k)-bit coloring. Then, we expand each edge to cover all rlog k
vertices used to represent the former r vertices.

2. (k7€) — (k: 2, f) This was in Lecture 18.
T

3. (k,2,¢) (> [PY8S]

4. (2,r,¢) — (2,3,)—ByCook

5. (k,re) — (k,e-r, = Ze¢) — based on expander walks
=1-— (1 €)e

However, these don’t help us prove the PCP Theorem. In reductions 1 through 4, € only goes down,

but we need to make € equal to 1/2 to prove the PCP theorem. In reduction 5, € does get bigger,
log k
but the ratio o8 still gets bigger, not smaller. This ratio is approximately what we want to

€
have be small, but none of these reductions decrease it.

3 Dinur

The reductions in 2.2 aren’t enough to prove the PCP Theorem. Dinur’s proof, however, relies on
two key lemmas.

Lemma 1 (Gap Amplification) Ve, k 3K such that Ve,

(k,2,¢) — (K,2,c-€).

Lemma 2 3§ such that VK,
(K,2,¢) — (2,4, €0).

Note that the ¢ in Lemma 2 is fixed. Thus, fix ¢ = 8/4. Now, for k = 16, let K be as implied
by Lemma 1. We can combine Lemma 1 and Lemma 2 with Reduction 2 from Section 2.2 to prove

Lemma 3 (16,2,¢) — (16,2, 2¢):

(16,2, ¢) 2222 L (K2, ec)
Lemma 2 (2, 47 86)

Reduction 2 (16, 27 26)

20-2

What Lemma 3 lets us do is increase the size of the gap from € to 2e with a linear reduction.

We claim that our work in Lecture 19 can be seen to imply Lemma 2. Informally, a PCP is
more than just a proof, but is a commitment to a specific proof. We can adapt our with in showing
how to check a PCP to check a graph coloring.

Let I =logk. We split each vertex v into a cloud of k vertices. For each of these vertices i, we
choose a linear function L; and let the color of ¢ be the bit L;(x(v)) where x(v) is considered as a
(log k)-bit vector. The constraints that we checked of the form IT[Q1] + II[Q2] = T[Q;1 + Q2] for a
valid PCP get modeled as 3-edges.

Next, Dinur’s proof of Lemma 1. We first sketch a weak reduction with expander walks as in
Reduction 5. There, we take a random walk on GG, and take the conjunction of the constraints on
the edges we traverse. If G is an expander then this will amplify the error gap (¢). However, with
this, r will increase but we need r to stay the same while k increases to K.

Instead, in Dinur’s construction, we start by fixing a constant ¢ and then letting B, = B =
{u| é(u,v) <t} where §(u,v) is the length of the shortest path between u and v in G. We now
define our reduction

G = (V, E,valid)
1
G' =G, = (V' E valid)
where

V=V

E = {(u,v) | Jwy - -wy st w1 =u,w; =0, (W, wit1) € B, = <1< t} as a multiset

X ur— {xu: By — {1,...,k}}.

That is, each new edge (u,v) is the collection of paths from u to v, and each new coloring of u x'(u)
is a function specifying the old coloring on B,,, the neighborhood of u. We then require that these
colorings can be stitched together to form a valid coloring of the entire graph.

Specifically, for some u and v connected by an edge (u,v) € E’, valid' (xu, xo) = 1 if

1. Yw € B, N By, xu(w) = xu(w)
2. Ve = (w17’(U2) c FE Wlth w1, W2 S Bu N B'U; Va,lid(e,xu(wl),Xy(WQ)) =L

This construction produces a graph with r still equal to 2. However, our new colors imply much
more about the state of the graph and thus checking each edge gives more information. By choosing
a large enough value for ¢, we can then get any desired increase in strictness e. The number of
colors increases to some K. This proves Lemma 1.

References

[Din06] Irit Dinur. The pcp theorem by gap amplification. In STOC ’06: Proceedings of the thirty-
eighth annual ACM symposium on Theory of computing, pages 241-250, New York, NY,
USA, 2006. ACM Press.

[PY88] Christos Papadimitriou and Mihalis Yannakakis. 1988.

20-3

