
6.841 Advanced Complexity Theory April 25, 2007

Lecture 20

Lecturer: Madhu Sudan Scribe: Alex Schwendner

1 Generalized r-Graph k-coloring

Our goal for this lecture is to prove the PCP Theorem using Dinur’s proof by Gap Amplifica-
tion [Din06]. For this, we’ll be using our second view of PCPs, namely Generalized Graph Coloring.

For a given triple (k, r, ǫ), the Generalized r-Graph k-coloring problem consists of a graph (V, E)
along with a notion of which colorings are valid for each hyper-edge:

G = (V, E, valid : E × [k]r −→ {0, 1})

E ⊆ V × V × · · · × V
︸ ︷︷ ︸

r-times

We define a k-coloring to be an assignment of one of k colors to each vertex: χ : V −→ {1, . . . , k}.
For a coloring χ, we call an edge e = (v1, . . . , vr) satisfied if valid(e, χ(v1), . . . , χ(vr)) = 1. The
graph G is then called k-colorable if there exists a coloring χ such that all edges are satisfied.

We consider the promise problem for which we want to accept if G is k-colorable, and reject if
at least an ǫ fraction of the edges are unsatisfied in any coloring of G. If we define

unsatχ(G) =
|{e ∈ E | e not satisfied by χ}

|E|

unsat(G) = min
χ

{unsatχ(G)}

then we can specify that we wish to reject G if unsat(G) ≥ ǫ.

2 Reductions

2.1 Definition

We define a reduction (k, r, ǫ) −→ (k′, r′, ǫ′) to be a linear-time reduction mapping an r-graph G
to an r′-graph G′ such that if G is k-colorable, then G′ is k′-colorable, and if unsat(G) ≥ ǫ then
unsatG′ ≥ ǫ′:

r-graph G −→ r′-graph G′

G k-colorable =⇒ G′ k′-colorable

unsat(G) ≥ ǫ =⇒ unsat(G′) ≥ ǫ′

20-1

2.2 Classical Reductions

Here are some easy classical (or neo-classical) reductions:

1. (k, r, ǫ) −→ (2, r log k, ǫ) — Here, we replace each vertex with log k vertices with binary colors
that encode the previous (log k)-bit coloring. Then, we expand each edge to cover all r log k
vertices used to represent the former r vertices.

2. (k, r, ǫ) −→
(

kr, 2,
ǫ

r

)

— This was in Lecture 18.

3. (k, 2, ǫ) −→

(

3, 2,
ǫ

f(k)

)

— [PY88]

4. (2, r, ǫ) −→
(

2, 3,
ǫ

r

)

— By Cook

5. (k, r, ǫ) −→ (k, c · r, ≈ ǫ · c
︸ ︷︷ ︸

=1−(1−ǫ)c

) — based on expander walks

However, these don’t help us prove the PCP Theorem. In reductions 1 through 4, ǫ only goes down,
but we need to make ǫ equal to 1/2 to prove the PCP theorem. In reduction 5, ǫ does get bigger,

but the ratio
r · log k

ǫ
still gets bigger, not smaller. This ratio is approximately what we want to

have be small, but none of these reductions decrease it.

3 Dinur

The reductions in 2.2 aren’t enough to prove the PCP Theorem. Dinur’s proof, however, relies on
two key lemmas.

Lemma 1 (Gap Amplification) ∀ c, k ∃K such that ∀ ǫ,

(k, 2, ǫ) −→ (K, 2, c · ǫ).

Lemma 2 ∃ δ such that ∀K,
(K, 2, ǫ) −→ (2, 4, ǫδ).

Note that the δ in Lemma 2 is fixed. Thus, fix c = 8/δ. Now, for k = 16, let K be as implied
by Lemma 1. We can combine Lemma 1 and Lemma 2 with Reduction 2 from Section 2.2 to prove

Lemma 3 (16, 2, ǫ) −→ (16, 2, 2ǫ):

(16, 2, ǫ)
Lemma 1
−−−−−−→ (K, 2, ǫc)

Lemma 2
−−−−−−→ (2, 4, 8ǫ)

Reduction 2
−−−−−−−→ (16, 2, 2ǫ)

20-2

What Lemma 3 lets us do is increase the size of the gap from ǫ to 2ǫ with a linear reduction.
We claim that our work in Lecture 19 can be seen to imply Lemma 2. Informally, a PCP is

more than just a proof, but is a commitment to a specific proof. We can adapt our with in showing
how to check a PCP to check a graph coloring.

Let l = log k. We split each vertex v into a cloud of k vertices. For each of these vertices i, we
choose a linear function Li and let the color of i be the bit Li(χ(v)) where χ(v) is considered as a
(log k)-bit vector. The constraints that we checked of the form Π[Q1] + Π[Q2] = Π[Q1 + Q2] for a
valid PCP get modeled as 3-edges.

Next, Dinur’s proof of Lemma 1. We first sketch a weak reduction with expander walks as in
Reduction 5. There, we take a random walk on G, and take the conjunction of the constraints on
the edges we traverse. If G is an expander then this will amplify the error gap (ǫ). However, with
this, r will increase but we need r to stay the same while k increases to K.

Instead, in Dinur’s construction, we start by fixing a constant t and then letting Bv = Bt
v =

{u | δ(u, v) ≤ t} where δ(u, v) is the length of the shortest path between u and v in G. We now
define our reduction

G = (V, E, valid)

↓

G′ = G′

t = (V ′, E′, valid′)

where

V ′ = V

E′ =

{

(u, v) | ∃w1 · · ·wl s.t. w1 = u, wl = v, (wi, wi+1) ∈ E,
t

2
≤ l ≤ t

}

as a multiset

χ′ : u 7−→ {χu : Bu −→ {1, . . . , k}} .

That is, each new edge (u, v) is the collection of paths from u to v, and each new coloring of u χ′(u)
is a function specifying the old coloring on Bu, the neighborhood of u. We then require that these
colorings can be stitched together to form a valid coloring of the entire graph.

Specifically, for some u and v connected by an edge (u, v) ∈ E′, valid′(χu, χv) = 1 if

1. ∀ w ∈ Bu ∩ Bv, χu(w) = χv(w)

2. ∀e = (w1, w2) ∈ E with w1, w2 ∈ Bu ∩ Bv, valid(e, χu(w1), χv(w2)) = 1.

This construction produces a graph with r still equal to 2. However, our new colors imply much
more about the state of the graph and thus checking each edge gives more information. By choosing
a large enough value for t, we can then get any desired increase in strictness ǫ. The number of
colors increases to some K. This proves Lemma 1.

References

[Din06] Irit Dinur. The pcp theorem by gap amplification. In STOC ’06: Proceedings of the thirty-
eighth annual ACM symposium on Theory of computing, pages 241–250, New York, NY,
USA, 2006. ACM Press.

[PY88] Christos Papadimitriou and Mihalis Yannakakis. 1988.

20-3

