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1 Overview

Topics for this lecture are:

• Continue the discussion on Average-Case analysis (as opposed to Worst Case);

• Present Impagliazzo’s five possible worldsl

Administrativia:

• Project presentations are on Wed and Thu in 32-G531 and 32-G631 respectively;

• Email comments on PCP and Average-Case lectures by Tuesday.

• Fill out HKN Survey online.

2 Literature on Average-Case Complexity

Some of important surveys on average case complexity (very far from being all of them) are, in approximate
chronological order:

• Levin [1] formalized the idea that average case complexity is about problems plus a distribution over
inputs (i.e., hardness depends on the the distribution).

• Impagliazzo [2] wrote a survey giving his “Personal View of Average-Case Complexity” describing 5
possible worlds (we live in exactly one of them; we just don’t know which one, yet).

• Goldreich wrote a survey, that made its way into his book [3].

• Ajtai [4] gave a talk at ICM’02 on connections between Worst-Case complexity and Average-Case
Complexity, specifically, in the context on lattice problems.

• Bogdanov and Trevisan [5] recently wrote a survey on “Average-Case Complexity”.

In this lecture, we discuss Impagliazzo’s five possible worlds, as well as Ajtai’s lattice problems.

3 Impagliazzo’s five possible worlds

Russell Impagliazzo wrote a survey on Average-Case Complexity [2] describing 5 possible worlds: we live in
one of them, but do not yet know which one.

The motivation for the classification is to relate cryptography to worst-case/average-case complexity. A
question raised by Diffie-Hellmann was whether we can base cryptography on strong assumptions such as
P 6= NP. Today we can’t, and there are roughly 3 questions that, at the moment, seem relatively independent:

• P 6= NP ;

• Existence of one-way functions (defined below). This implies some cryptography (Diffie-Hellmann’s
protocol);
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• Existence of Public Key CryptoSystems (PKCS) (best example of it is, of course, RSA).

The only implications we know are that PKCS implies existence of one-way functions, which, in turn,
imply P 6= NP . Where does the truth lie?

Definition 1 A one-way function is a function f : {0, 1}∗ → {0, 1}∗ such that it is easy to compute but hard
to invert on average, i.e.:

Easy: Computing f(x) takes poly(|x|) time;

Hard: Given a random x ← Un (uniform over {0, 1}n), it is hard to invert f(x), that is for any poly-time
probabilistic-time algorithm A, we have that

Pr
x←Un

[A(f(x)) ∈ f−1(f(x))] = neglijible.

(Note that it would be too harsh to require that A returns x precisely since f(x) migth have simply lost
this information.)

These considerations led to the definitions of DNP and Avg − BPP.
Impagliazzo’s five worlds roughly assume different scenarios of validity of the above questions.
To put worlds in a perspective, he uses the story of Gauss’s class in school, and his Professor Grouse.

The idea is that Professor Grouse wants to humiliate Gauss in front of the class by giving him (inventing)
a problem that Gauss cannot solve. In each of the 5 worlds, we will see whether Professor manages to
humiliate Gauss or not. In these considerations, we assume that both Professor Grouse and Gauss are
poly-time algorithms1.

1. [Algorithmica] The world where P = NP. Then we have efficient algorithms for all NP-complete
problems. Professor Grouse cannot embarass Gauss since Gauss can efficiently solve all problems that
Professor Grouse can give him (well, at least from the class of problem that do have an efficiently
describable solution/proof).

2. [Heuristica] P 6= NP but DNP ⊆ Avg − BPP. In some sense there are hard instances to NP-complete
problems, but it’s hard to find those instances (they are not poly-time sample-able).

Professor Grouse cannot humiliate Gauss by giving a hard problem (unless he spends a lot of time
looking for such problem, say, polynomially more time than Gauss uses to solve it).

Note that this world is still different from Algorithmica, even “in practice” (see Impagliazzo paper for
details).

3. [Pessiland] In this world, the world of a pessimist, DNP 6⊆ Avg − BPP but one-way functions don’t
exist. The first condition says it is easy to come up with hard instances (there are poly-time sampleable
distributions that are hard). However, the second condition says that it is hard to generate hard
instances together with the answers (since we can invert the generation process and find the random
bits used to generate problem+solution).

The implication for Professor Grouse is that he can humiliate Gauss but in a very restricted sense.
Professor Grouse can give Gauss a hard problem, but he will not know the answer to his own question!

Although in this “grey world”, NP-complete problems are hard, and crypto does not exist, there are
some positive implications.

4. [Minicrypt] In this world, one-way functions exist but not PKCS. Some limited form of cryptography
is possible.

Professor Grouse can finally humiliate Gauss: Professor Grouse can generate problems, together with
solutions, such that Gauss cannot solve these problems.

1Impagliazzo leaves it unspecified whether these are deterministic or randomized or even quantum algorithms.

23-2



5. [Cryptomania] PKCS exist, and we can regain some confidence in e-Commerce.

Professor Grouse can stage a superior form of humiliation, in addition to the above form of humiliation.
Professor Grouse can choose the “dumbest” student in the class (on the fly), and then, generate a
problem that Gauss cannot solve but this dumbest student can solve. All this happens in a public
setting (no private channel between the professor and the dumbest student).

The last world seems most believable.

4 Random 3SAT

There are some “empirical” approaches to solving hard problems (NP) in average-case (i.e., take a problem
and solve on “random” instances). However, so far, people have tried and failed. One of the illustrative
directions is Random 3SAT problem.

For a 3CNF formula φ with m clauses on n variables, we define the density of φ to be the ratio ∆(φ) =
m/n. For each δ > 0, n > 0, we define a distribution Dδ,n on 3CNF formulae on n variables with density
δ as follows. For a given number of variables n, we pick m = δ · n clauses, where for each clause we pick 3
literals uniformly at random. The resulting average-case computational problem is referred to as Random
3SAT.

The study of the behavior of Random 3SAT has attracted a lot of attention in Statistical Physics, and
Probability Theory in general.

It is easy to see that for density δ close to 0, the probability that a clause in Dδ,n tends to 1. Moreover,
for density δ close to∞, this probability tends to 0. In fact, it has been conjectured that there exists a phase
transition on the fraction of satisfiable formulae of density δ, around some density ∆0 ≈ 4.2. More precisely,

Conjecture 1 There exists ∆0 ≈ 4.2, such that

• For each ∆ < ∆0, limn→∞Prφ∈D∆,n
[φ is satisfiable] = 1.

• For each ∆ > ∆0, limn→∞Prφ∈D∆,n [φ is satisfiable] = 0.

Note that if the above conjecture is true, then Random 3SAT is easy for all densities ∆ 6= ∆0: one can
simply output YES if the density of the given formula is greater than ∆0, and NO otherwise. In fact, all
(heuristic) algorithms that are currently known for Random 3SAT fail for densities close to ∆0. This fact
lead to the formulation of the following computational conjecture.

Conjecture 2 If we pick a random 3CNF formula φ of density ∆0, then it is hard to tell if φ is satisfiable.

The above conjecture implies that DNP ( Avg-BPP. On the other hand, one could also formulate an
opposite conjecture:

Conjecture 3 There exists a polynomial-time algorithm A, and a family of formulae {Sn}n∈N, such that

• Prφ∈D∆0,n [φ ∈ Sn] is negligible.

• For each φ /∈ Sn, A(φ) = SAT(φ).

Note that conjectures 1 and 3 can be simultaneously true. That is, a phase transition in Random 3SAT
might not necessarily imply a computational hardness on average for density ∆0. In fact, Ben-Sasson has
shown that there exists an NP-hard problem that gives rise to a phase transition with respect to some
appropriate parameter, yet it is easy on average for every possible value of this parameter.

23-3



5 Shortest Vector Problem

Ajtai used problems based on lattice to introduce a worst-case problem Π1 which is not known to be in P ,
that can be reduced to a distributional problem (Π2, D).

A lattice L in Qn is defined as a discrete additive subset of Qn. That is, for each x, y ∈ L, x + y ∈ L,
and x− y ∈ L, and also there exists ε > 0, s.t. for each x ∈ L, Ball(x, ε) ∩ L = {x}.

The length of the shortest vector in L, denoted by λ1(L) is defined as the minimum distance between
two elements in L.

A lattice in Qn can be given represented by a set of vectors b1, . . . , bn ∈ Qn, such that

• b1, . . . , bn are linearly independent.

• L = {
∑

i∈[n] ri · bi|r ∈ Zn}.

Therefore, with the above representation a lattice can be given as input to an algorithm. The computa-
tional problem SVP of finding λ1(L) is notoriously hard.

One can define an approximate version of SVP, called Approx-SVPg as follows. Given a lattice L by its
basis (b1, . . . , bn), output a non-zero vector v ∈ L, s.t. ‖v‖2 ≤ g(n) · λ1(L).

It has been shown that for each polynomial g2, there exists a polynomial g1, such that the worst-case
problem Approx-SVPg1

can be reduced to the distributional problem (Approx-SVPg2
, Dg2).

Moreover, Coldreich and Coldwasser have shown that the problem Approx-SVP cannot be NP-hard.
Feigenbaum and Fortnow, and Bogdanov and Trevisan have shown that if there exists a many-one

reduction from SAT to the same DNP problem (Π, D), then PH collapses.
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