
6.S897 Algebra and Computation February 13, 2012

Lecture 2
Lecturer: Madhu Sudan Scribe: Zeyuan Allen Zhu

1 Administrivia

• Students signed them up on a piece of paper today. If you missed the first class, please subscribe
to the course mailing list yourself.

• Please sign-up for scribing by sending an email to Prof. Sudan. All students (including listeners)
need to scribe at least once.

• Lectures always start on time, so do not come late to the classroom.

• Will have one or two problem sets.

• Madhu will select topics beyond the course materials for students to present as course projects.
That requires each student to spend 10 minutes to explain the work in class, and complete a
write-up that can be useful for others. It is a casual and fun job, and encouraged to done in pairs.

2 Membership Problem in Permutation Groups

Instead of listing potential topics that we plan to cover in this course now, we start with a concrete
example.

How can we solve a cube?

(In class Prof. Sudan handed to the students a fancy cube that few of us have seen before, found in Prof.
Erik Demaine’s office.) This is an algorithmic challenge to us. We have this cubic object, and can do
a few moves on it. Can we reach some given state from the beginning, and how? We now formalize a
broader class of such problems in a purely mathematical way.

Suppose that we are given finite number of n pieces and there are some basic moves allowed. In a
traditional cube, there are n = 54 pieces (stickers) and we can take for instance the top or side face and
rotate. We introduce now a few notions before we proceed:

• [n] := {1, 2, . . . , n}.
• Sn := {π : [n]→ [n] : π is one-to-one}.
• 〈S〉 := {group of permutations obtained by composing members of S}.

Suppose that the operations allowed are permutations π1, π2, . . . , πk ∈ Sn, and we can do any combi-
nation of them. Let S = {π1, π2, . . . , πk} and 〈S〉 is a subgroup of Sn. Given an arbitrary permutation
π ∈ Sn, does π ∈ 〈S〉? Can we solve this problem efficiently?

In general, we consider cases where k = |S| = O(n) and we expect efficient algorithms to run in time
poly(n).1 We note that it may take a very large number of compositions to generate 〈S〉. For instance,
it is an exercise to given an example S ⊆ Sn such that ∃σ ∈ 〈S〉 while

min
l
{l s.t. σ = s1s2 · · · sl ∧ ∀i, si ∈ S} = exp(n1/10) .

In order to overcome this, we need the idea of an arithmetic circuit. We will not use much of this notion
today, but the definition is as follows:

1Typically even writing done a permutation requires O(n) time. There are other ways to represent permutations in a
more concise way, and thus one may also expect the existence of algorithms that runs in time polylog(n), though a little
too ambitious.
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2.1 Arithmetic Circuit over Group

(In the future we will also consider it over rings or fields.)

• Input: S ⊆ G.

• Circuit: C = (t1, t2, . . . , tm) a collection of group elements, such that for each ti:

– either ti ∈ S,

– or ti = tj · tk such that j, k < i.

• We say that C computes T if T ⊆ {t1, t2, . . . , tm}.

In this language, our question can be formalized as:

• Input: n, S ⊆ Sn, and a permutation π ∈ Sn.

• Output: YES if there exists an arithmetic circuit computing {π} using input S, or NO if there
isn’t any.

We remark here that such a question is general itself because:

Fact 1 Every finite group is a (subgroup of) permutation group.

Proof Given a finite group G with |G| = n, we consider the following multiplication map:

g ∈ G is mapped to πg ∈ Sn, where πg : G→ G by α 7→ gα.

It satisfies that πaπb = πab, and every element is mapped to a permutation whose length is as large as
the group itself.

A big challenge in group theory is to ask that: is there a way to represent an element by not n
numbers but perhaps log n or polylog(n) numbers? For instance, can we solve the membership question
without going through this intermediate permutation group for certain problems?

2.2 The Sims Algorithm

(Most of the materials are following a book Permutation Group Algorithms by Ákos Seress.)
Let us define Ck,j = {π|π(i) = i∀i < k, and π−1(k) = j} ⊂ Sn, and notice that Ck,j ∩ Ck′,j′ = ∅ as

long as (k, j) 6= (k′, j′). We always assume that j > k. Now, the entire space of permutation group Sn

is partitioned by such C’s:
e ∪

⋃
1≤k<j≤n

Ck,j = Sn .

We say that the k-value of a permutation π is k0 if π ∈ Ck0,j for some j > k0. We further define (and
notice that T can be any set, not necessarily a subgroup of Sn):

Definition 2

• Minimal set: T is minimal if |T ∩ Ck,j | ≤ 1 for all k, j.

• Representative set: T ⊆ G is a representative set for G = 〈S〉, if |T ∩ Ck,j | ≥ 1 ⇔ |G ∩ Ck,j | ≥ 1
for all k, j.

• Strong generating set (SGS): T is an SGS for G if T is both minimal and representative for G.

Fact 3 For any group G, there exists SGS T , and |T | ≤
(
n
2

)
.
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2.3 Membership Testing Given SGS

Given π and suppose we want to check if π ∈ G = 〈S〉. We have that π ∈ Ck,j is in some unique Ck,j . If
T ∩Ck,j = ∅ we are done, because this implies G∩Ck,j = ∅ and thus it cannot be the case that π ∈ Ck,j .

Otherwise, we can find some σ ∈ T∩Ck,j . So can apply σ−1π and verify if σ−1π ∈ G. This verification
suffices because: 1) σ−1π will have a strictly smaller k-value than π; 2) π ∈ G if and only if σ−1π ∈ G,
as σ is an element in G.

2.4 Computing Strong Generating Set

Let us start with a simple trial of computing SGS.

• Start with T ← ∅.

• INSERT(σ, T )

– If σ is identity, we stop.

– If σ ∈ T , we stop.

– If σ ∈ Ck,j and T ∩ Ck,j = ∅, T ← T ∪ {σ}.
– If σ ∈ Ck,j and T ∩ Ck,j = {τ}, INSERT(τ−1σ, T ).

Definition 4 Canonical product is the product of previously inserted elements whose k-values are in-
creasing.

It satisfies that if two canonical products of elements from minimal sets are identical, i.e., σ1σ2 · · ·σl =
τ1τ2 · · · τm while σ1, . . . , σl, τ1, . . . , τm ∈ T and T is a minimal set, then l = m and for all i, σi = τi.

Definition 5 Closure(T ) = T̄ = {canonical products of elements of T}.

In this language, what we have shown earlier regarding having an SGS we can test membership, is
equivalent to:

T is an SGS ⇒ T̄ = G.

Fact 6 INSERT(σ, T ) will make sure that σ ∈ T̄ after the procedure.

And this above fact suggests that we can insert all elements from S into T and this ensures that S ⊆ T̄ .
This does not fully answer our question yet, since we still need to show that T̄ is a subgroup of Sn (i.e.,
closed under multiplications). Ideally, we can fix this by taking two elements from the closure T̄ and try
to insert it, but unfortunately there will be too many such elements in T̄ . So, instead we consider the
following algorithm:

Computing SGS (n, S):

• Start with T ← ∅.

• While there exists σ ∈ S or σ ∈ T · T , such that INSERT(σ, T ) is a non-trivial operation (i.e., it
changes T ), do it.

This algorithm terminates in polynomial time because T is a minimal set and has no more than
(
n
2

)
permutations. Its correctness will be shown with the help of the next lemma:

Lemma 7 If T · T ⊆ T̄ , then T̄ · T̄ = T̄ forms a subgroup.
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It is obvious that if the above lemma holds (i.e., T̄ · T̄ = T̄ is a subgroup), and we know that T̂ contains
S, it must be that T̄ = 〈S〉. To show that T is an SGS, we only need to notice that for all k, j, such
that 〈S〉 ∩ Ck,j 6= ∅ ⇒ T̄ ∩ Ck,j 6= ∅ ⇒ T ∩ Ck,j 6= ∅, using the property of canonical products.

Therefore, the only thing left is to prove Lemma 7.

Proof [of Lemma 7] We prove by induction.2

Take two elements σ, τ ∈ T̄ and we want to show that στ ∈ T̄ . Assume that σ = σ1 · · ·σl is the
canonical representation with σi ∈ T and k(σi) < k(σi+1). Here we use k(·) to represent the k-value of
a permutation. Similarly we assume that τ = τ1 · · · τm. We prove by double induction on the decreasing
of k = k(τ1) and then on the increasing of l.

If k = n this means τ = e is the identity permutation, and the claim trivially holds.
If k < n and k(σl) < k = k(τ1), then σ1 . . . σlτ1 . . . τm is of the increasing k-value and thus in T̄ .
If k < n but k(σl) ≥ k = k(τ1), then since T · T ⊆ T̄ , we can write σlτ1 = α1 · · ·αp ∈ T̄ where αi’s

are of increasing k-values.

στ = σ1 · · ·σl−1 σlτ1 τ2 · · · τm

=

α1α2 · · ·αp

= σ1 · · ·σl−1 α1α
′ τ ′

(1)

In fact, since k(σl) ≥ k and k(τ1) = k, we have that k(α1) ≥ k while all k(α2), . . . , k(αp) > k. If
we define τ ′ = τ2 · · · τm while α′ = α2 · · ·αp, we have that by induction α′τ ′ ∈ T̄ since k(τ2) > k.
Furthermore, since k(α′τ ′) > k (as both k(α′), k(τ ′) > k), we know α1α

′τ ′ = σlτ ∈ T̄ . At last, having
that k(σl · τ) ≥ k, and by induction on l, we have that στ = (σ1 · · ·σl−1)(σlτ) ∈ T̄ . We conclude that T̄
is closed under multiplication.

2.5 Other Works

Babai and Codenotti (FOCS’08) have also been looking at other representations of groups. For instance,
for subsets of matrices Fn×n

q . They achieved efficient algorithms except for two caveats: one needs to be
able to factor certain numbers such as q − 1 or q5 − 1, and do discrete log over Fq.

3 Contents of the course

• Berlekamp’s algorithm for factoring univariate polynomials over Fp for large prime p. This algo-
rithm was introduced in 1972 and is randomized. It remains an open question to factor even simple
polynomials like x2 − a in deterministic polynomial time (i.e., polylog(p)).

• Finite fields.

• (Factoring) multivariate polynomials.

• Factorization over rational polynomials (LLL).

• Techniques to solve multivariate systems of polynomial equations.

• Two different models for algebraic computations.

2The scribe today wants to point out here that this proof was not covered in class and written with the help from the
course notes in 2005. However, in 2005 the k-value was defined in an opposite way which leads to a different inductive
proof.
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– Blum-Shub-Smale model of computing. A hard problem under this model is given polynomials
P1, . . . , Pm ∈ C[x1, . . . , xn] with coefficients being 0-1’s, and to check if they have a common
zero.

– Valiant model of computing. A hard problem under this model is the permanent of matrices.

4 Assignment

Email madhu@mit.edu with your favorite and surprising algorithm and explain why. Due by the end of
this week.
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