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Of central importance to Algebra and Computation are structures such as groups, rings, and
especially finite fields. Here, we review basic definitions and cover the construction of finite fields.

1 Basic definitions: Groups, rings, fields, vector spaces

Definition 1 (Group) For a set G and an operator · : G×G→ G, a pair (G, ·) is a group iff the
following properties are satisfied:

1. (Identity) There exists e ∈ G such that for all a ∈ G, a · e = a.

2. (Associativity) For all a, b, c ∈ G, a · (b · c) = (a · b) · c.

3. (Inverses) For all a ∈ G, there exists an element b ∈ G such that a · b = e.

We say a group (G, ·) is commutative or Abelian iff for all a, b ∈ G, a · b = b · a. If (G, ·) has an
identity and satisfies associativity but not all elements have inverses is called a monoid.

Definition 2 (Ring) For a set R and binary operators · and + over R, the triple (R,+, ·) is a ring
iff the following properties are satisfied:

1. (Commutative addition with additive identity) (R,+) is an Abelian group with identity element
0.

2. (Multiplication with multiplicative identity) (R, ·) is a monoid with identity element 1.

3. (Distributivity) For all a, b, c ∈ R, a · (b+ c) = a · b+ a · c.

We say that a ring (R,+, ·) is a commutative ring iff for all a, b ∈ R, a · b = b · a.

Definition 3 (Field) A tuple (F,+, ·) is a field iff the following properties are satisfied:

1. (F,+, ·) is a ring.

2. (F − {0}, ·) is an Abelian group.

Definition 4 (Vector space) V is a vector space over the field F if there is an addition operation
+ : V × V → V and an scalar multiplication operation · : F× V → V such that:

1. (Closure under addition) (V,+) is an Abelian group.

2. (Scalar distributivity) For all a ∈ F, u, v ∈ V , α · (u+ v) = α · u+ α · v.

Proposition 5 All finite vector spaces V over a field F is isomorphic to Fn for some n.

2 Finite Fields

Much of the course will be concerned with computation over finite fields. Here, we’ll cover the basics
of finite fields: existence, uniqueness, and construction.
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2.1 Notation

All the fields discussed below will be finite. p and q will almost always denote a prime and a prime
power (pt for some prime p and positive integer t), respectively.

2.2 Prime fields

Definition 6 A field F is prime if |F| = p for some prime p.

Theorem 7 For every prime p, a finite field of size p exists, and moreover, it is unique up to
isomorphism.

Proof Consider the quotient ring Z/pZ. It is a field, and a field of size p. Let K,L be two fields
of order p. For isomorphism, map 0K to 0L, 1K to 1L; it is clear that this mapping extends naturally
and uniquely to an isomorphism.

Definition 8 The characteristic of a finite field char(F) is the smallest integer n such that the
multiplicative identity 1 added to itself n times is equal to the additive identity 0.

2.3 Constructing Fields from Fields

Constructing non-prime fields is more interesting; we will actually construct them starting with
prime fields. But before we get into that, let’s look at how we can construct larger fields from
smaller ones.

Definition 9 (Field of fractions) Let R be an integral domain. The field of fractions F (R) =
R × R/ ∼ where ∼ is an equivalence relation such that a, b, c, d ∈ R, (a, b) ∼ (c, d) if and only if
ad = bc.

Proposition 10 The field of fractions F (R) for an integral domain R is a field.

Here are two primary ways of constructing fields from fields. Let F be a field, and let F[X] be
the ring of polynomials with coefficients in F.

1. F (F[X]), the field of fractions, is called the field of rational functions over F.

2. Let g ∈ F[X] be an irreducible polynomial. Then F[X]/(g) is a field.

2.4 Constructing Non-prime Fields

Lemma 11 Let F be a finite field. Then it has prime characteristic.

Fact 12 Let a, b ∈ F where F has characteristic p. Then (a + b)p
r

= ap
r

+ bp
r

for any positive
integer r.

Lemma 13 Let F be a finite field, with characteristic p. Then F is an Fp-vector space.

Corollary 14 Let F be a finite field. Then |F| = pt for some prime p and some positive integer t.

Lemma 15 (Division Lemma) Let f, g polynomials in F[X] for some finite field F. Then there
exists a unique pair (q, r) ∈ F[X] such that deg(r) < deg(g) and f = q · g + r.

Corollary 16 Let f ∈ F[X] have degree r. Then f has at most r roots in F.
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Corollary 17 Suppose F were some field of order q. Then xq − x =
∏
α∈F (x− α).

Proof By the division lemma, xq −x has at most q roots in F. It now suffices to show that for all
α ∈ F, x − α divides xq − x, or equivalently that α is a root. If α = 0, then it is clear. Otherwise,
note that non-zero α is contained in F∗, the cyclic multiplicative group of F, and by Lagrange’s
theorem αq = α, and we are done.

Lemma 18 (Splitting Field Lemma) For all g ∈ F[X], there exists a field extension K of F such
that g splits completely into linear factors in K[X].

Proof Suppose F were of order q. There are two cases: g ∈ F[X] is irreducible, or not irreducible.
Support it were irreducible. Consider the quotient field K = F[X]/(g); it is of size qr where r =
deg(g). Then by the above corollary, g splits completely into linear factors in K[X]. If g were not
irreducible, then we can write g = ab, where a is an irreducible polynomial and b is a nontrivial
polynomial. Since a splits completely over F[X]/(a), we can then recurse on splitting b over an
extension field of F[X]/(a), until we finally obtain a final extension field where g completely splits.

Definition 19 Let F ⊆ K be fields, and g a polynomial in F[X]. Then K is called the splitting field
of g over F if and only if g factors completely into linear polynomials in K[X].

We will use the Splitting Field Lemma to construct our field of order qr for any r.

Proposition 20 Let K be a splitting field of xq
r − x over Fq. Then S = {α ∈ K | αqr = α} forms

a field of order qr.

Lemma 21 (Unique containment) Let F,G be subfields of K. If |F| = |G|, then F = G.

Lemma 22 (Uniqueness of finite fields) Let Fpr be a finite field of order pr as constructed
above. It is unique up to isomorphism.

Proof Let K,L be finite fields of order pr. Then both are splitting fields of the polynomial
xq − x, where we let q = pr. The finite field Fp embeds uniquely into both K and L. Let φ be the
isomorphism between the copy of Fp in K and the copy in L. Treating K and L as vector spaces of
Fp where each element of the vector space is an ordered tuple of Fq, it is clear that φ extends to an

isomorphism φ̃ between K and L.

We’ve shown that if we are given an irreducible polynomial g(x) ∈ Fq[X] of degree r, then we can
construct the unique field of size qr. Now we show that such an irreducible polynomial of degree r
always exists, and hence fields of all prime powers exist.

Lemma 23 If g is an irreducible polynomial of degree r in Fq[X], then g divides xq
r − x ∈ Fq[X].

Proof Consider K = Fq[X]/(g), which is a field of order qr. The multiplicative group K∗ is cyclic
and has order qr − 1, and by Lagrange’s theorem xq

r ≡ x mod g(x), and thus g divides xq
r − x.

Lemma 24 Let q be a prime power and r be some positive integer. Then:

xq
r

− x =
∏

g irreducible, monic ∈Fq [X]
deg(g)|r

g(x)
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Corollary 25 For all prime power q, positive integer r, there exist an irreducible, monic polynomial
g ∈ Fq[X] of degree r.

Proof By the above lemma we have that xq
r −x is the product of monic, irreducible polynomials

in Fq[X] with degree that divide r. Via a clever counting argument (which will be filled in the more
polished version of these scribe notes later), there must exist a monic, irreducible g with degree
exactly equal to r.

We have now shown that constructing Fq[X]/(g) for some irreducible, degree r polynomial g will
give the unique finite field of order qr, up to isomorphism.

Definition 26 (Minimal polynomial) Let K be a finite field extension of F. Let α ∈ K. Then
the minimal polynomial of α over F is a monic, irreducible polynomial g of minimal degree in F[X]
such that g(α) = 0.

3 Functions over finite fields

There is a nice way of looking at functions over finite fields as polynomials. Consider some function
f : Fq → Fq. f can be, without loss of generality, be represented as some univariate polynomial of
degree at most q − 1 (this follows from polynomial interpolation).

A function f : Fqr → Fq can be understood in a very nice way by first viewing f as some function

f̃ : Fqr → Fqr which just happens to map only into the smaller subfield Fq. Then, as before, we can

represent f̃ as a polynomial f̃(x) =
∑
cix

i. However, since we know the range of f̃ is contained in
Fq, we have that (∑

cix
i
)q

=
(∑

cix
i
)

in Fqr .

Definition 27 (Trace) The trace Tr : Fqr → Fq is defined as Tr(x) = x+ xq + · · ·+ xq
r−1.

Lemma 28 (Linearity of Trace) Tr is linear.
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