
6.S897 Algebra and Computation March 14, 2012

Lecture 11
Lecturer: Madhu Sudan Scribe: TB Schardl

This lecture concludes our discussion of bivariate polynomial factorization. We first focus on
a couple remaining key ingredients to make the algorithm work. We then turn our attention to
multivariate polynomial factorization, introducing the notion of representing the polynomial as a
blackbox, and then sketching the high level ideas of the algorithm. Our goal today is to wrap up
the discussion of polynomial factorization and move on to new topics by next lecture.

1 Factoring bivariate polynomials

Let us begin by reviewing the algorithm for factoring bivariate polynomials.

Split(f ∈ F[x, y],deg(f) = d):

0. Preprocess f to ensure it has no repeated factors.

If ∂f
∂x = 0 and ∂f

∂y = 0, then f = gp for some g ∈ F, and we may simply return f . Otherwise, if
∂f
∂x = 0, then we evaluate Split(f(y, x), d), thereby swapping the variables x and y. Finally,

if g = gcd(f, ∂f∂x) 6= 1, then we return (g, f/g) for reasons previously discussed.

1. Pick some β ∈ F such that f(x, β) has no repeated factors, and set f(x, y)←f(x, y + β).

2. Factor f = g1 · g2 · . . . · gk (mod y). Notationally, we’ll let g = g1 and h = g2 · . . . · gk. Make
sure g is irreducible and monic.

3. Lift f = g(t) · h(t) (mod yt), where t is chosen to be sufficiently large, i.e. t > d2.

4. Use g(t) to get information for an irreducible factor of f by jumping g(t) → g̃. This jump is
done by solving g̃ = g(t) · h̃ (mod yt) such that deg(g̃) ≤ d and degx(g̃) is minimal.

5. Return (g̃, f/g̃).

We now want to justify step 5, or in particular, that g̃ divides f . To prove this property, we
argue that g̃ is one of the factors of f through a sequence of small claims.

To argue this sequence of claims, let us first establish some notation. First, we write f =
f1 · f2 · . . . · f`, where fi is irreducible for 1 ≤ i ≤ `. As we have seen in previous lectures, after
computing f mod y, each fi may split further into factors fi = fi1 · fi2 · . . . · fini (mod y), where
each fij ∈ F[x] is irreducible.

With this notation, we can start making claims to help us show the validity of step 5. We first
argue that the g we compute from factoring f mod y is a factor of one of the fi’s.

Claim 1 The factor g = fij for some i, j.

Proof This claim follows from unique factorization.

Next, we argue that the g̃ term computed from the jump step is one of the factors of f .

Claim 2 If g = fij for some i, j, then g̃ = fi for the same i.

We argue this claim through a sequence of small steps. In particular, we consider a hypothetical
Hensel lifting, and we first argue that the lift of the factor fi of f is closely related to the lift of f .

11-1

Claim 3 Suppose we lift fi = fij ·
∏
m6=j fim (mod y). Let g = fij and h0 =

∏
m 6=j fim, so

fi = g · h0 (mod y). After lifting, we have fi = g
(t)
0 · h(t)

0 (mod yt). Then there exists some

polynomial u ∈ F[x, y] such that g(t) = g
(t)
0 (1 + u · yt/2), or equivalently, g(t)(1 − u · yt/2) = gt0

(mod yt).

Proof The proof follows from the uniqueness of Hensel liftings (see last lecture). We know that
f = g(t) · h(t) (mod yt). Furthermore, we have

f =
∏
m

fm

= fi ·
∏
m 6=i

fm

= g
(t)
0 · h

(t)
0 ·

∏
m6=i

fm (mod yt) .

Now we claim that there is some solution to the jumping problem such that g̃ = fi.

Claim 4 There exists some h̃0 such that (fi, h̃0) is a valid solution to the jump problem, ignoring
minimality.

Proof We have that fi = g
(t)
0 · h

(t)
0 (mod yt). From the previous claim, we can rewrite this as

fi = g(t) · (1− u · yt/2)h
(t)
0 (mod yt). Letting g̃ = g(t) and h̃0 = (1− u · yt/2)h

(t)
0 proves the claim.

Finally, we shall show that g̃ and fi share a common factor. Because we know that fi is irre-
ducible, this implies g̃ ∼ fi.
Claim 5 Suppose both (fi, h̃0) and (g̃, h̃) are both valid solutions (with small degree) to the jump
problem. Then fi and g̃ share a common factor.

Proof We show this claim by examining the resultant Resx(fi, g̃) and showing that it must
be 0, which implies that fi and g̃ share a factor. To show that Resx(fi, g̃) = 0, we assume the
contrapositive in order to arrive at a contradiction.

Suppose that fi and g̃ have no common factor. As a result, their resultant R(y) = Resx(fi, g̃)
is nonzero, has degree at most d2, and is in the ideal of (g̃, fi). Consequently, we know there exists
polynomials A,B ∈ F[x, y] such that R = A · fi +B · g̃. Substituting in fi = g(t) · h̃0 (mod yt) and
g̃ = g(t) · h̃ (mod yt) and rearranging terms produces the equation

R = g(t)(A · h̃0 +B · h̃) (mod yt) .

We now notice two things. First, the polynomial g(t) is a monic polynomial in x. Second, because
the highest degree term in (A · h̃0 + B · h̃) must be nonzero, it must contain a highest degree term
in x. Consequently, we can’t eliminate the highest degree x term to get R(y), and thus this scenario
cannot happen.

2 Factoring polynomials over the integers

We now briefly consider the problem of factoring a polynomial f over the integers. This problem is
soluble using a similar algorithm to Split for factoring bivariate polynomials, substituting a chosen
prime p in place of y. This modified algorithm is summarized below.

Split-Z(f ∈ Z[x],deg(f) = d):

11-2

0. Preprocess f to ensure it has no repeated factors.

1. Pick a prime p ∈ Z such that f has no repeated factors modulo p. Factor f = g · h (mod p).

2. Lift f = g(t) · h(t) (mod pt), where t is chosen to be sufficiently large, i.e. t > d2.

3. Use g(t) to get information for an irreducible factor of f by jumping g(t) → g̃. This jump is
done by solving g̃ = g(t) · h̃ (mod pt) such that deg(g̃) ≤ d and degx(g̃) is minimal.

4. Return (g̃, f/g̃).

One question regarding the validity of this algorithm is, “How large must pt be?” The answer to
this question depends on the size of the coefficients of the original polynomial f . Once we are able
to bound the size of these coefficients, the resultant will behave as we expect, and the rest of the
algorithm follows.

We now sketch the arguments for bounding the size of the coefficients of the factors, and thereby
bounding the size of pt, in terms of the coefficients of f . Consider a polynomial f ∈ Z[x], which we
can write as f =

∑
i fix

i, and let us suppose that |fi| ≤ 2b for all i. For another polynomial g that
divides f , we want to bound the size of the coefficients of g. To determine this bound, we justify
two claims. First, we argue that the complex roots are “small.”

Claim 6 All complex roots of f are bounded by n · 2b.

Sketch of Proof Suppose that some root α of f is large, or formally, suppose |α| > n · 2b. Then

the first term in the expression of f is fn(n · 2b)n >
∑n−1
i=0 fi(n · 2b)i.

Next, we argue that, if the complex roots of g are small, then the coefficients of g are bounded
in terms of the coefficients of f .

Claim 7 If the complex roots of g are bounded, then so are the coefficients of g.

Sketch of Proof We assume that g is monic, so we let g ∈ Q[x]. Suppose we split g into complex
terms. In order to transform the factors g into factors of f ∈ Z[x], we must multiply these factors
by some integer, whose size is bounded by the largest term in f . Hence, the coefficients of g are
bounded in terms of the coefficients of f .

3 Factoring multivariate polynomials

To conclude, we turn our attention to the problem of factoring polynomials of more than 2 variables.
One idea to approach this problem is apply a similar algorithm to Split, using step 2 to eliminate
one variable of the polynomial at a time until we are left with factoring a univariate polynomial.
This scheme introduces blowup in time and the representation of the polynomials involved for each
variable, however. Thus, while this idea works for polynomials over a constant number of variables,
for polynomials over more variables this blowup can be problematic. It turns out that, while several
alternative schemes for factoring multivariate polynomials introduce similarly large blow-ups in time
and representation, this blowup comes from the representation of the polynomial itself.

An alternative representation of multivariate polynomials that allows us to factor more efficiently
is as a black box. In this representation, a polynomial is represented by some black box P , which
takes as input some assignment (α1, . . . , αn) of the n variables and produces P (α1, . . . , αn). With
this representation, the goal of factoring the polynomial P is to produce the set of black boxes for
the factors of P .

11-3

Assuming we use a black-box representation of polynomials, the rough idea for factoring mul-
tivariate polynomials works as follows. Consider a polynomial P (y1, . . . , yn) that is the prod-
uct of k irreducible factors P = P1 · P2 · . . . · Pk. Suppose the polynomial is “nice” in that
P (y1, 0, . . . , 0) =

∏
i Pi(y1, 0, . . . , 0), where the Pi(y1, 0, . . . , 0)’s are irreducible and pairwise dis-

tinct. While this univariate polynomial is more convenient to work with, it does not immediately
allow us to compute P (α1, . . . , αn). To address this issue, we instead work with the bivariate polyno-
mial P̃ (t1, t2) = P (t1+α1t2, α2t2, α3t2, . . . , αnt2), which we can use to compute either P (y1, 0, . . . , 0)
or P (α1, . . . , αn) by choosing t1 and t2 appropriately. Notice that, because P splits into k factors,
P̃ also splits into k factors. Furthermore, P̃ does not split into more factors, since setting t2 = 0
produces a polynomial with k factors.

Assuming P is a nice polynomial, we can factor the black-box polynomial P as follows.

0. In preprocessing, factor P (y1, 0, . . . , 0) =
∏
i Pi(y1, 0, . . . , 0). Notice that we can represent

P (y1, 0, . . . , 0) explicitly, because it is a univariate polynomial.

1. Compute P̃ (t1, t2) = P (t1 + α1t2, α2t2, . . . , αnt2) by interpolation.

2. Factor P̃ into factors P̃ = Q1 ·Q2 · . . . ·Q`.

3. Find j such that Qj(t1, 0) = P1(y1, 0, . . . , 0). Exactly one such Qj exists, since all pairwise
Pi’s are pairwise distinct and irreducible. Return Qj(0, 1).

This procedure relies on P being a nice polynomial, i.e. a polynomial whose factors can be
discovered by considering a single line. A natural question to ask is, “What are the chances that
we get such a nice polynomial?” Unfortunately, there are some polynomials that are irreducible but
can be factored along any line. Consequently, this approach seems doomed to failure.

It turns out, however, that we can use a similar approach to factoring mutlivariate polynomials
by considering a plane instead of a line. According to the Hilbert Irreducibility Theorem (which
is really due to Kaltofen), if P ∈ F[y1, . . . , yn] is irreducible, then we have

Prᾱ,β̄,γ̄∈Fn

{
Pᾱ,β̄,γ̄(t1, t2) = P (ᾱ+ t1β̄ + t2γ̄) is reducible

}
≤ deg(P)4/ |F| ,

where
{
ᾱ+ t1β̄ + t2γ̄ | t1, t2 ∈ F

}
represents the surface. Applying this theorem, we can adapt our

earlier technique by preprocessing the black-box polynomial P along a random plane to produce an
explicitly represented trivariate polynomial, and then applying our previous Split algorithm to find
factors.

11-4

