
6.S897 Algebra and Computation April 18, 2012

Lecture 18 - Arithmetic Complexity

Instructor: Madhu Sudan Scribe: Omer Paneth

1 Today - Arithmetic Complexity

1. Models of computation.

2. Basic problems and results.

Most of the material of today’s lecture is covered in the survey of [SY10] (see link in the
course website).

2 Problems

We will be interested in two types of problems:

1. Computing a function φ : Fn → Fm of the form φ = (φ1, . . . , φm) where φi ∈
F[x1, . . . , xn] is a polynomial. (For example, computing the determinant or the per-
manent of an n× n matrix).

2. Given φ : Fn × Fm → Fl and given x ∈ Fn, finding y ∈ Fm such that φ(x, y) = ~0.
(This problem is similar to Hilbert Nullstellensatz).

3 Arithmetic Circuits

Also known as straight-line programs, this is a natural arithmetic model of computation
(similar to boolean circuits).

Definition 3.1 (Informal). An arithmetic circuit C over a field F consists of the following:

Input variables: x1, . . . , xn.

Gates: A list of gates of the form “yi ← A � B” where � ∈ {+,−, ∗,÷} and A,B ∈
{x1, . . . , xn, y1, . . . , yi−1} ∪ F. For example:

y1 ← x1 + 0

y2 ← y1 ∗ x2

Output variables: A subset of the variables {yi1 , . . . , yim}.

An arithmetic circuit is a formula if every yi appears in the RHS at most once (every
variable yi serves as input to at most one gate).

We say that an arithmetic circuit C computes a function φ if for every x = (x1, . . . , xn) ∈
Fn we have that yi1 , . . . , yim = φ(x).

1

3.1 Complexity Measures

We consider the following complexity measures for an arithmetic circuit C:

size(C): Number of gates. Similarly, +size and ∗size are the number of addition and the
number of multiplication gates, respectively.

depth(C): Longest chain of dependencies.

mem(C): The maximal number of variables that are “necessary” at any point:

max
i
|{yj |j < i and yj is used after i}|

deg(C): Maximal degree of the polynomial that is computed by any gate (clearly we can
think of every gate as computing some intermediate polynomial). Note that the degree
of the function (as a polynomial) can be smaller than the degree of a circuit computing
the function.

For every arithmetic circuit C we have that deg(C) < 2depth(C), since at every level of the
circuit the maximal degree can at most double.

4 Valiant’s Classes

In [Val79], Valiant defines the arithmetic complexity classes (known today as) VP and VNP
that are analogous to the classes P and NP. A very different analog is presented in [BSS88].

Definition 4.1. A set of functions Φ =
{
φn : Fpoly(n) → F

}
n

is in VP iff deg(φn) = poly(n)
and there exists a polynomial p(n) such that for every n there exists a circuit Cn that
computes φn and size(Cn) < p(n).

Definition 4.2. A set of functions Φ =
{
φn : Fpoly(n) → F

}
n

is in VNP iff there exists a

function Ψ ∈ VP, Ψ =
{
ψn : Fpoly(n) × Fpoly(n) → F

}
n
, such that.

φn(x) =
∑

w∈{0,1}poly(n)

ψn(x,w)

The class VQP is defined similarly to VP, except that we require the existence of a circuit
of quasi-polynomial size (2polylog(n)).

Interestingly, every function in VP has an arithmetic circuit of size O(log2(n)) [VSBR83].
It is believed that the analogous result for boolean circuits is false.

Next, we define the notion of reducibility via a projective reduction.

Definition 4.3. The function φ is reducible to the function ψ (φ ≤p ψ) if there exist
y1, . . . , ym ∈ {x1, . . . , xn} ∪ F such that φ(x1, . . . , xn) = ψ(y1, . . . , ym).

The reduction is polynomial if m = poly(n) and it is quasi-polynomial if m = 2polylog(n).

2

4.1 Complete Problems

Let DETn and PERMn be the determinant and permanent of an n×n matrix, respectively.
Clearly DET ∈ VP (follows from Gaussian elimination). To see that PERM ∈ VNP, consider
Ryser’s formula for the permanent.∑

S⊆[n]

(−1)n−|S|
n∏
i=1

∑
j∈S

xi,j

Theorem 4.4 ([Val79]). 1. DET is VQP-complete (w.r.t quasi-polynomial reductions).

2. If chr(F) 6= 2, then PERM is VNP-complete (w.r.t polynomial reductions).

We believe (but are unable to prove) that VP 6= VNP and that VQP 6= VNP. Using
Theorem 4.4 we can state the above question as follows: for X ∈ Fn×n, X = {xi,j}i,j∈[n]
is there a matrix Y ∈ Fm×m, m = 2polylog(n) such that every yi′,j′ ∈ {xi,j}i,j∈[n] ∪ F and

PERMn(X) = DETn(Y)?

5 Removing Division Gates

We will show that removing division gates does not affect the power of our model (up to
polynomial factors).

Theorem 5.1. If φ is a polynomial in n valuables of degree r that can be commuted by a
circuit of size s with gates in {+,−, ∗,÷}, then φ can be computed with poly(n, r, s) gates
in {+,−, ∗}.

We will start by proving the following lemma regarding the computation of HOMi(φ) -
the homogeneous degree i part of a polynomial φ.

Lemma 5.2 (Homogenization Lemma). If ψ can be computed by a circuit of degree r and
size s, then the function (HOM0(ψ), . . . ,HOMr(ψ)) can be computed by a circuit of degree
r and size O(r2s).

Proof. We prove by induction on the structure of the circuit computing φ. The base case
(φ is a constant or an input variable) is trivial. If φ← φ1 + φ2 then for every i:

HOMi(φ) = HOMi(φ1) + HOMi(φ2)

If φ← φ1 ∗ φ2 then for every i:

HOMi(φ) =

i∑
j=1

HOMj(φ1) · HOMi−j(φ2)

Let s1, r1 and s2, r2 be the size and degree of the functions φ1 and φ2, respectively. We
have that s = 1 + s1 + s2 and r = r1 + r2. By the inductive hypotheses, computing
all homogeneous parts of φ1, φ2 requirers size O(r21s1 + r22s2). In addition, for every pair
i, j ∈ [r1] × [r2], the element {HOMi(φ1) · HOMj(φ2)} appears in one of the homogeneous
parts of φ and therefore the total size of the circuit is O(r21s1 + r22s2 + r1r2) = O(r2s).

3

Theorem 5.1. Without using division gates we can emulate the computation of the original
circuit for φ, explicitly computing the numerator and the denominator. That is, using only
gates in {+,−, ∗}, we can emulate gate of the form:

(f, g) = (f1, g1) � (f2, g2)

where � ∈ {+,−, ∗,÷}. After this emulation we get φ = f/g. Next, we show how to
eliminate this last division. It must be that g 6≡ 0, that is, g(~α) 6= 0 for some ~α. Assuming
the field is large enough, we can translate and scale the input such that g(~0) = 1, without
significantly increasing the size of the circuit. Now we can write:

φ =
f

g
=

f

1− (1− g)
=

∞∑
i=0

f(1− g)i

Note that the last inequality only makes sense for every homogeneous part separately. Since
HOM0(1− g) = 0 we get that for j < i, HOMj((1− g)i) = 0 and therefore:

HOMk(φ) = HOMk(

∞∑
i=0

f(1− g)i) = HOMk(

k∑
i=0

f(1− g)i)

Since the size of f, g is poly(s, r) we get that for every k ≤ r, HOMk(φ) can be computed
by a circuit of size poly(s, r).

6 Constant Memory Circuits

We will show that any function that can be computed with logarithmic depth can also be
computed in polynomial size and constant memory. We get the same qualitative results as
Barrington’s theorem with a simple proof.

Theorem 6.1 ([BOC92]). Every function φ that is computable by a circuit of depth d, can
be computed by a circuit of size 4d and memory 3.

Proof. We assume φ is computed without division gates (see Theorem 5.1). We will con-
struct a circuit of size 4d that will only use the variables U, V,W and will compute the
function (U + V · φ, V,W). Construction is recursive. For d = 0 the construction is trivial.
If d > 0, by the inductive hypotheses, for every ψ of depth d − 1 there exists a circuit
Cψ(U, V,W) of size 4d−1 that computes the function (U + V · ψ, V,W). If φ = φ1 + φ2 then
we construct Cφ as follows:

1. (U + V φ1, V,W)← Cφ1(U, V,W).

2. (U + V (φ1 + φ2), V,W)← Cφ2(U + V φ1, V,W).

3. (U, V,W)← (U + V (φ1 + φ2), V,W).

(The case φ = φ1− φ2 is handled similarly). If φ = φ1 ∗ φ2 then we construct Cφ as follows:

1. (U + V φ1, V,W)← Cφ1(U, V,W).

4

2. (W + Uφ2 + V φ1φ2, U + V φ1, V))← Cφ2(W,U + V φ1, V).

3. (U, V,W + Uφ2 + V φ1φ2, , V))← C−φ1(U + V φ1, V,W + Uφ2 + V φ1φ2).

4. (W + V φ1φ2, U, V)← C−φ2(W + Uφ2 + V φ1φ2, U, V).

In any case, size(φ) ≤ 4 ·max(size(φ1), size(φ2)) ≤ 4d.

7 Lower bounds

We cover some lower bounds on the size of arithmetic circuits. Strassen showed that com-
puting the following simple set of polynomials requires a super-linear size circuit.

Theorem 7.1. Every circuit computing the function (xr1, . . . , x
r
n) must be of size Ω(n log(r)).

The existence of a single polynomial that cannot be computed by linear-size circuits
follows from the following theorem.

Theorem 7.2 ([BS83]). If the polynomials φ1, . . . , φn can only be jointly computed by a
super-linear size circuit, then the following polynomial can only be computed by a super-
linear size circuit:

φ̂(x1, . . . , xn, y1, . . . , yn) =
n∑
i=1

φi(~x) · yi

Corollary 7.3. The function
∑n

i=1 yix
r
i requires a super-linear size circuit.

The proof on Theorem 7.2 uses the following theorem about partial derivatives:

Theorem 7.4 ([BS83]). If the function φ can be computed by a circuit of size s, then the
following function that jointly computes all the partial derivatives of φ:(

∂φ

∂x1
, . . . ,

∂φ

∂xn

)
can be computed by a circuit of size s.

References

[BOC92] Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a con-
stant number of registers. SIAM J. Comput., 21(1):54–58, 1992.

[BS83] Walter Baur and Volker Strassen. The complexity of partial derivatives. Theor.
Comput. Sci., 22:317–330, 1983.

[BSS88] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation over
the real numbers; np completeness, recursive functions and universal machines
(extended abstract). In FOCS, pages 387–397, 1988.

5

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent
results and open questions. Foundations and Trends in Theoretical Computer
Science, 5(3-4):207–388, 2010.

[Val79] Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput.
Sci., 8:189–201, 1979.

[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast parallel
computation of polynomials using few processors. SIAM J. Comput., 12(4):641–
644, 1983.

6

