Essential Coding Theory (MIT 6.440) Lecturer: Madhu Sudan
Problem Set 1 Due: Wednesday, February 27, 2013

Instructions

References: In general, try not to run to reference material to answer questions. Try to
think about the problem to see if you can solve it without consulting any external
sources. If this fails, you may look up any reference material.

Collaboration: Collaboration is allowed, but try to limit yourselves to groups of size at
most four.

Writeup: You must write the solutions by yourselves. Cite all references and collaborators.
Explain why you needed to consult any of the references, if you did consult any. Submit
the solutions electronically as a pdf file. Deadline is 11pm on due date.

Problems

1. (Linear Algebra Review): (Need not be turned in.)

(a) Given a kxn matrix G with 0/1 entries, of rank k over Z,, generating a linear code
C' = {x - G|x}, show that there exists an n x m matrix H, (henceforth referred to
as the parity check matrix), such that C' = {y|yH = 0}. What is the relationship
between m, n and k above?

(b) Give an efficient algorithm to compute such an H, given G, and vice versa.
(¢) Give an explicit description of the generator matrix of a Hamming code of block
length 2¢ — 1.
2. (Binary Hamming code & bound):

(a) Prove that for every positive integer ¢, there is a “Hamming” code mapping 2¢—/¢—1
bit messages to 2° — 1-bit codewords that can correct any single bit error, and that
this is optimal. Specifically:

(b) Describe the “generator matrix” G and “parity check” matrix H for this code.
(The description need not be fully explicit — it suffices to describe it to the extent
that one can perform encoding and decoding in polynomial time.)

(c¢) Prove that the matrices above lead to a code correcting single bit errors.
(d) Prove that no single bit error-correcting code of length 2 — 1 can have more

codewords than the code you’ve designed.

3. (Extra Credit Question) For general ¥, give the best construction you can of a code
over alphabet ¥ of minimum distance 3. (What can you do when |X| is a power of a
prime number? What can you do in other cases?)



4. (Pairwise independent spaces): A set S C {0, 1}" is a pairwise independent space, if, for
every pair i # j € {1,...,x}, it is the case that if you pick a random element of S and
project it onto the ith coordinate and jthe coordinate you get a pair of independent
bits drawn uniformly from {0, 1}.

(a) Let H be the (2° — 1) x £ parity check matrix of a binary Hamming code. Show
that the collection of vectors S = {xHT|x € {0,1}¢} forms a pairwise independent
space. (HT denotes the transpose of H.)

(b) (Extra Credit Question) Show that any pairwise independent space on n bits must
contain at least n + 1 points.

5. The Hat Problem: Oops! The earlier version of the pset was missing the description
of the hat problem. Added now. Sorry!

The Hat Problem involves n people in a room, each of whom is given a black/white
hat chosen uniformly at random (and independent of the choices of all other people).
Each person can see the hat color of all other people, but not their own. Each person
is asked if (s)he wishes to guess their own hat color. They can either guess, or abstain.
Each person makes their choice without knowledge of what the other people are doing.
They either win collectively, or lose collectively. They win if all the people who don’t
abstain guess their hat color correctly and at least one person does not abstain. They
lose if all people abstain, or if some person guesses their color incorrectly. Your goal
below is to come up with a strategy that will allow the n people to win, with pretty
high probability. The problem involves some careful modelling, and some knowledge of
Hamming codes!

(a) Lets say that a directed graph G is a subgraph of the n-dimensional hypercube if
its vertex set is {0, 1}" and if u — v is an edge in G, then w and v differ in at most
one coordinate. Let K(G) be the number of vertices of G with in-degree at least
one, and out-degree zero. Show that the probability of winning the hat problem
equals the maximum, over directed subgraphs G of the n-dimensional hypercube,
of K(G)/2".

(b) Using the fact that the out-degree of any vertex is at most n, show that K(G)/2"
is at most - for any directed subgraph G of the n-dimensional hypercube.

(c) Show that if n = 2° — 1, then there exists a directed subgraph G of the n-
dimensional hypercube with K(G)/2" = 25. (This is where the Hamming code
comes in.)



