
6.440: Essential Coding Theory February 19, 2013

Lecture 4

Prof. Madhu Sudan Scribe: Matthew Coudron

1 Overview: Limits on Rates of Codes

1. Singleton Bound (Pigeon-Hole Principle)

2. Hamming Bound (Balls/Packing)

3. Plotkin Bound (Geometric Argument)

2 Quick Review

The expression [n, k, d]q denotes the set of linear codes over Fq (or some alphabet Σ of size q) of
length n, dimension k, and distance d.

The rate of a code C is defined by: Rate(C) ≡ k
n .

The relative distance of C is defined by: δ(C) ≡ d
n .

We define the q-ary Entropy function Hq(δ) as: Hq(δ) ≡ −δ logq(δ)−(1−δ)logq(1−δ)+δlogq(q−1).

We know that there exist codes with rate R and relative distance δ for every pair R, δ such that
R ≤ 1−Hq(δ).

The goal of this lecture is to explore known bounds on error correcting codes.

3 Singleton Bound

Consider the map Π : Σn → Σk−1 defined by Π(a1, ..., an) = (a1, ..., ak−1).

Given a code C ⊂ Σn with |C| > |Σ|k−1 it follows by the Pigeonhole Principle that ∃x 6= y ∈ C
such that Π(x) = Π(y) (this follows because the image of Π contains at most |Σ|k−1 elements).

This pair x, y are then identical on the first k − 1 coordinates, so they can only differ on other
n− k + 1 coordinates, and thus ∆(x, y) ≤ n− k + 1.

It follows that ∆(C) ≤ n− k + 1, and thus δ = ∆(c)
n ≤ n−k+1

n ≤ 1−R+ 1
n .

Alternatively, writing ∆(C) = d, we may express the bound as k ≤ n− d+ 1.

This reasoning gives what is known as the Singleton Bound.
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4 Reed-Solomon Codes

Here we give a brief description of a class of codes, called Reed-Solomon codes, which demonstrates
that the Singleton bound is tight. In particular Reed-Solomon codes allow us to conclude that no
bound can improve on the Singleton bound without taking q (the alphabet size) into account.

A Reed-Solomon code over Fq (q ≥ n) is specified by a set {α1, ..., αn} of n distinct elements in Fq
and a parameter k. A message m = (m0, ...,mk−1) ∈ Fkq corresponds to the following polynomial:

m(x) =
∑k−1

i=0 mix
i

A message can be encoded as follows:

Encoding(m) ≡ (m(α1), ...,m(αn)) ∈ Fnq
This code has dimension k by definition. Since any non-zero polynomial of degree k − 1 can have
at most k − 1 distinct roots, it follows that distinct codewords can agree in at most k − 1 distinct
positions. Thus, distinct codewords must differ in at least n − (k − 1) = n − k + 1 positions.
Therefore, the code has distance n−k+1. These parameters saturate the Singleton bound exactly,
thus demonstrating that it is a tight bound.

5 Hamming Bound/Sphere Packing Bound

Consider a (n, k, d)q code C. Define t ≡ bd−1
2 c, and imagine a ball of radius t about every codeword

in C. No two such balls can intersect since an intersection would imply that the corresponding
codewords are separated by a distance less than d (a contradiction of the definition of d). Con-
sequently, the sum of the volumes of all of these balls must be less than the volume of the entire
codeword space. Letting Vq(t) denote the volume of a ball of radius t (about any point), we have
established the following:

qn ≥ qk · Vq(t)

.

A simple calculation gives Vq(t) =
∑t

i=0

(
n
i

)
(q − 1)i, and so we have

qn ≥ qk · Vq(t) = qk
t∑
i=0

(
n

i

)
(q − 1)i

This relationship is known as the Hamming Bound, or the Sphere Packing Bound.

Note that logq(Vq(t)) is approximatelyHq(
t
n)n so that, by taking logarithms of the above expression,

we get the approximate inequality

n ≥ k +Hq(
t

n
)n

and dividing by n gives
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1 ≥ k

n
+Hq(

t

n
) = R+Hq(

t

n
)

This is an approximate statement of the Hamming Bound which can be made precise for large t
and n.

Comment: A class of codes called BCH codes give a way to pack balls into Fnq very efficiently for
constant distances. These codes show that, for q = 2 and constant distances, the Hamming bound
is essentially tight.

6 Plotkin Bound

Theorem 1. Plotkin Bound

1. If C ⊂ {0, 1}n and ∆(C) ≥ n
2 then |C| ≤ 2n→ δ ≥ 1

2 → R ≤ 0

2. R ≤ 1− q
q−1δ = 1− δ − δ

q−1 . In particular, for q = 2, R ≤ 1− 2δ.

Proof. For part 1: Let C = {c1, ...., cm} ⊂ Fn2 be our code, so ∆(C) ≥ n
2 by assumption. Define the

map T : Fn2 → Rn by applying the following map coordinatewise:

0→ 1

1→ −1

For x, y ∈ Fn2 it is easy to show that ||T (x) − T (y)||22 = 4d(x, y), and ||T (x)||22 = n. A direct
calculation shows that for i 6= j ∈ [m],

〈T (ci), T (cj)〉 = n− 2d(ci, cj) ≤ n− 2∆(C) ≤ n− 2
n

2
= 0

We now normalize all of the vectors T (ci) (which doesn’t change the sign of their inner product),
and apply the part 2 of the following interesting mathematical fact.

Lemma 2. If v1, ..., vm ∈ Rn are unit vectors such that:

1. 〈vi, vj〉 < 0 ∀i 6= j then m ≤ n+ 1

2. 〈vi, vj〉 ≤ 0 ∀i 6= j then m ≤ 2n

It follows that we must have m = |C| ≤ 2n, from which we see that δ = ∆(C)
|C| ≥

n
2
n = 1

2 , and R ≤ 0.
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