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Lecture 4
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1 Overview: Limits on Rates of Codes

1. Singleton Bound (Pigeon-Hole Principle)
2. Hamming Bound (Balls/Packing)

3. Plotkin Bound (Geometric Argument)

2  Quick Review

The expression [n, k,d|, denotes the set of linear codes over [, (or some alphabet X of size q) of
length n, dimension k, and distance d.

The rate of a code C' is defined by: Rate(C) = %
The relative distance of C' is defined by: §(C) = %.
We define the g-ary Entropy function Hy(d) as: Hy(d) = —6log,(d) —(1—0)logy(1—6)+0logy(q—1).

We know that there exist codes with rate R and relative distance § for every pair R,J such that
R <1— Hy9).

The goal of this lecture is to explore known bounds on error correcting codes.

3 Singleton Bound

Consider the map IT : ¥ — ¥*=1 defined by I(ay, ..., an) = (a1, ..., ar_1).

Given a code C C X" with |C| > |£|F! it follows by the Pigeonhole Principle that 3z # y € C
such that II(z) = II(y) (this follows because the image of II contains at most |S|*~! elements).

This pair x,y are then identical on the first £k — 1 coordinates, so they can only differ on other
n — k + 1 coordinates, and thus A(z,y) <n —k+ 1.
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It follows that A(C) <n —k+ 1, and thus 6 = <n=ktl <] _ R4 1
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Alternatively, writing A(C') = d, we may express the bound as k <n —d+ 1.

This reasoning gives what is known as the Singleton Bound.



4 Reed-Solomon Codes

Here we give a brief description of a class of codes, called Reed-Solomon codes, which demonstrates
that the Singleton bound is tight. In particular Reed-Solomon codes allow us to conclude that no
bound can improve on the Singleton bound without taking ¢ (the alphabet size) into account.

A Reed-Solomon code over Fy (¢ > n) is specified by a set {a, ..., . } of n distinct elements in F,
and a parameter k. A message m = (mg,...,mp_1) € ]F’; corresponds to the following polynomial:

m(z) = 355y mix’
A message can be encoded as follows:
Encoding(m) = (m(a1), ..., m(a)) € Fy

This code has dimension k by definition. Since any non-zero polynomial of degree k£ — 1 can have
at most k — 1 distinct roots, it follows that distinct codewords can agree in at most k£ — 1 distinct
positions. Thus, distinct codewords must differ in at least n — (k — 1) = n — k + 1 positions.
Therefore, the code has distance n —k + 1. These parameters saturate the Singleton bound exactly,
thus demonstrating that it is a tight bound.

5 Hamming Bound/Sphere Packing Bound

Consider a (n, k,d), code C. Define t = L%j, and imagine a ball of radius ¢ about every codeword
in C. No two such balls can intersect since an intersection would imply that the corresponding
codewords are separated by a distance less than d (a contradiction of the definition of d). Con-
sequently, the sum of the volumes of all of these balls must be less than the volume of the entire
codeword space. Letting V;(¢) denote the volume of a ball of radius ¢ (about any point), we have
established the following:

q" > " V(t)

A simple calculation gives V,(t) = Y¢_, (") (¢ —1)*, and so we have
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This relationship is known as the Hamming Bound, or the Sphere Packing Bound.

Note that log, (V(t)) is approximately Hy(£)n so that, by taking logarithms of the above expression,
we get the approximate inequality

t
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and dividing by n gives
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This is an approximate statement of the Hamming Bound which can be made precise for large ¢
and n.

Comment: A class of codes called BCH codes give a way to pack balls into Fy very efficiently for
constant distances. These codes show that, for ¢ = 2 and constant distances, the Hamming bound
is essentially tight.

6 Plotkin Bound

Theorem 1. Plotkin Bound

1. If C C {0,1}" and A(C) > 5 then |C] §2n—>52%—>R§0
2. Rgl—ﬁé:l—é—%. In particular, for q =2, R <1 — 24.
Proof. For part 1: Let C' = {c1, ....,cn} C F3 be our code, so A(C)) > 5 by assumption. Define the
map 7T : F} — R" by applying the following map coordinatewise:
0—1
1—-1

For z,y € F% it is easy to show that ||T(z) — T(y)||3 = 4d(x,y), and ||T(x)||3 = n. A direct
calculation shows that for ¢ # j € [m],

(T(c;i), T(cj)) =n—2d(ci,cj) <n—2A(C) <n-— 2% =0

We now normalize all of the vectors T'(¢;) (which doesn’t change the sign of their inner product),
and apply the part 2 of the following interesting mathematical fact.

Lemma 2. If vy,...,v, € R" are unit vectors such that:

1. (vi,v5) <0 Vi#j thenm <n+1

2. (vj,vj) <0 Vi#j thenm < 2n

It follows that we must have m = |C| < 2n, from which we see that § = % >
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