1 Overview: Limits on Rates of Codes

1. Singleton Bound (Pigeon-Hole Principle)
2. Hamming Bound (Balls/Packing)
3. Plotkin Bound (Geometric Argument)

2 Quick Review

The expression $[n, k, d]_{q}$ denotes the set of linear codes over \mathbb{F}_{q} (or some alphabet Σ of size q) of length n , dimension k , and distance d .
The rate of a code C is defined by: $\operatorname{Rate}(C) \equiv \frac{k}{n}$.
The relative distance of C is defined by: $\delta(C) \equiv \frac{d}{n}$.
We define the q-ary Entropy function $H_{q}(\delta)$ as: $H_{q}(\delta) \equiv-\delta \log _{q}(\delta)-(1-\delta) \log _{q}(1-\delta)+\delta \log _{q}(q-1)$.
We know that there exist codes with rate R and relative distance δ for every pair R, δ such that $R \leq 1-H_{q}(\delta)$.

The goal of this lecture is to explore known bounds on error correcting codes.

3 Singleton Bound

Consider the map $\Pi: \Sigma^{n} \rightarrow \Sigma^{k-1}$ defined by $\Pi\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}, \ldots, a_{k-1}\right)$.
Given a code $C \subset \Sigma^{n}$ with $|C|>|\Sigma|^{k-1}$ it follows by the Pigeonhole Principle that $\exists x \neq y \in C$ such that $\Pi(x)=\Pi(y)$ (this follows because the image of Π contains at most $|\Sigma|^{k-1}$ elements).

This pair x, y are then identical on the first $k-1$ coordinates, so they can only differ on other $n-k+1$ coordinates, and thus $\Delta(x, y) \leq n-k+1$.
It follows that $\Delta(C) \leq n-k+1$, and thus $\delta=\frac{\Delta(c)}{n} \leq \frac{n-k+1}{n} \leq 1-R+\frac{1}{n}$.
Alternatively, writing $\Delta(C)=d$, we may express the bound as $k \leq n-d+1$.
This reasoning gives what is known as the Singleton Bound.

4 Reed-Solomon Codes

Here we give a brief description of a class of codes, called Reed-Solomon codes, which demonstrates that the Singleton bound is tight. In particular Reed-Solomon codes allow us to conclude that no bound can improve on the Singleton bound without taking q (the alphabet size) into account.

A Reed-Solomon code over $\mathbb{F}_{q}(q \geq n)$ is specified by a set $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ of n distinct elements in \mathbb{F}_{q} and a parameter k. A message $m=\left(m_{0}, \ldots, m_{k-1}\right) \in \mathbb{F}_{q}^{k}$ corresponds to the following polynomial:
$m(x)=\sum_{i=0}^{k-1} m_{i} x^{i}$
A message can be encoded as follows:
$\operatorname{Encoding}(m) \equiv\left(m\left(\alpha_{1}\right), \ldots, m\left(\alpha_{n}\right)\right) \in \mathbb{F}_{q}^{n}$
This code has dimension k by definition. Since any non-zero polynomial of degree $k-1$ can have at most $k-1$ distinct roots, it follows that distinct codewords can agree in at most $k-1$ distinct positions. Thus, distinct codewords must differ in at least $n-(k-1)=n-k+1$ positions. Therefore, the code has distance $n-k+1$. These parameters saturate the Singleton bound exactly, thus demonstrating that it is a tight bound.

5 Hamming Bound/Sphere Packing Bound

Consider a $(n, k, d)_{q}$ code C. Define $t \equiv\left\lfloor\frac{d-1}{2}\right\rfloor$, and imagine a ball of radius t about every codeword in C. No two such balls can intersect since an intersection would imply that the corresponding codewords are separated by a distance less than d (a contradiction of the definition of d). Consequently, the sum of the volumes of all of these balls must be less than the volume of the entire codeword space. Letting $V_{q}(t)$ denote the volume of a ball of radius t (about any point), we have established the following:

$$
q^{n} \geq q^{k} \cdot V_{q}(t)
$$

A simple calculation gives $V_{q}(t)=\sum_{i=0}^{t}\binom{n}{i}(q-1)^{i}$, and so we have

$$
q^{n} \geq q^{k} \cdot V_{q}(t)=q^{k} \sum_{i=0}^{t}\binom{n}{i}(q-1)^{i}
$$

This relationship is known as the Hamming Bound, or the Sphere Packing Bound.
Note that $\log _{q}\left(V_{q}(t)\right)$ is approximately $H_{q}\left(\frac{t}{n}\right) n$ so that, by taking logarithms of the above expression, we get the approximate inequality

$$
n \geq k+H_{q}\left(\frac{t}{n}\right) n
$$

and dividing by n gives

$$
1 \geq \frac{k}{n}+H_{q}\left(\frac{t}{n}\right)=R+H_{q}\left(\frac{t}{n}\right)
$$

This is an approximate statement of the Hamming Bound which can be made precise for large t and n.

Comment: A class of codes called BCH codes give a way to pack balls into \mathbb{F}_{q}^{n} very efficiently for constant distances. These codes show that, for $q=2$ and constant distances, the Hamming bound is essentially tight.

6 Plotkin Bound

Theorem 1. Plotkin Bound

1. If $C \subset\{0,1\}^{n}$ and $\Delta(C) \geq \frac{n}{2}$ then $|C| \leq 2 n \rightarrow \delta \geq \frac{1}{2} \rightarrow R \leq 0$
2. $R \leq 1-\frac{q}{q-1} \delta=1-\delta-\frac{\delta}{q-1}$. In particular, for $q=2, R \leq 1-2 \delta$.

Proof. For part 1: Let $C=\left\{c_{1}, \ldots ., c_{m}\right\} \subset \mathbb{F}_{2}^{n}$ be our code, so $\Delta(C) \geq \frac{n}{2}$ by assumption. Define the map $T: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}^{n}$ by applying the following map coordinatewise:
$0 \rightarrow 1$
$1 \rightarrow-1$
For $x, y \in \mathbb{F}_{2}^{n}$ it is easy to show that $\|T(x)-T(y)\|_{2}^{2}=4 d(x, y)$, and $\|T(x)\|_{2}^{2}=n$. A direct calculation shows that for $i \neq j \in[m]$,

$$
\left\langle T\left(c_{i}\right), T\left(c_{j}\right)\right\rangle=n-2 d\left(c_{i}, c_{j}\right) \leq n-2 \Delta(C) \leq n-2 \frac{n}{2}=0
$$

We now normalize all of the vectors $T\left(c_{i}\right)$ (which doesn't change the sign of their inner product), and apply the part 2 of the following interesting mathematical fact.
Lemma 2. If $v_{1}, \ldots, v_{m} \in \mathbb{R}^{n}$ are unit vectors such that:

1. $\left\langle v_{i}, v_{j}\right\rangle<0 \forall i \neq j$ then $m \leq n+1$
2. $\left\langle v_{i}, v_{j}\right\rangle \leq 0 \forall i \neq j$ then $m \leq 2 n$

It follows that we must have $m=|C| \leq 2 n$, from which we see that $\delta=\frac{\Delta(C)}{|C|} \geq \frac{n}{n}=\frac{1}{2}$, and $R \leq 0$.

