6.440 Essential Coding Theory Feb 25, 2013

Lecture 6
Lecturer: M. Sudan Scribe: Timothy Chu

1 Algebraic Codes Continued: Overview

The scope of these notes will cover
1. Reed Solomon, Reed Muller, and Hadamard Codes
2. Duals of (Linear) Codes

3. Properties of finite fields, which will lead us to the Wozencraft Ensemble of
Codes (which we did not finish during this lecture). For now, think of our
foray into the Wozencraft ensemble of codes as an exercise understanding
finite fields and what they can do for you. However, we do not actually
get to the explicit description of the Wozencraft ensemble.

1.1 Basic Notation Review

Recall from lecture 1 that we described codes using the notation (n, k,d)q; R,
where:

1. The alphabet ¥ has |X| = ¢, and codewords reside in X".
2. A(C) > d (where A is the Hamming Distance metric).
3. |C| > ¢

R and ¢ are defined as lim,,_, o inf % and lim,,_, o inf %. Families of codes are
described by the point (4, R).

Previously, we introduced Reed Solomon and Reed Muller codes, which we
will review shortly in these notes.

For algebraic codes presented in these notes, we work over a finite field.
These notes assume some basic familiarity about finite fields; namely, that most
familiar operations with polynomials over the field R or Q (long division, inter-
polation, factorization) apply to the finite field F, of ¢ elements.

2 General Ideas for Algebraic/polynomial Codes

e Message = coeflicients of polynomials

e Encoding = Evaulation of polynomials at different values in , so

6-1

e Evaluation = Encoding

e Interpolation = Decoding from an error free code.

2.1 Review of Reed Solomon Codes

Recall the singleton bound, proven in lecture 3, which states that £k < n —d+ 1,
or R<1-6.

Reed Solomon codes are algebraic (linear) codes which meet the singleton
bound (as long as ¢ > n) and in practice, they are fast to decode (there exist
fast decoding techniques due to Berlekamp, which will not be elaborated here).

A Reed Solomon code is created by choosing a set («, ag, ... ay) of distinct
elements from F,. Message m = (mg,m1,...mk_1) € IF’; is associated with
a polynomial m(z) := mp_12" "1 + myp_02¥ 2 + ... + my. m is encoded via
Enc(m) = m(a1, az,...an) € Fy.

The code has dimension &k and the polynomial m(z) has degree k — 1. The
Reed Solomon code is linear (see note below), so if two code words z,y € F9,
then z — y € C. Polynomials of degree k — 1 in a finite field F, have no more
than k& — 1 roots, so * — y has no more than k£ — 1 bits with value 0. So
A(z,y) > n—k+1 for all z and y, so d > n — k + 1. This inequality is the
reverse of the Singleton bound, which holds for all codes, and thus Reed Muller
meets the Singleton Bound exactly.

Note: it is not difficult to see from the encoding procedure that the Reed
Solomon code is linear: specifically, the generator matrix €]F’; X" of the code is

1 1 . 1
ai al o ay
of o ... a2
k—1 k—1 k—1

aq Qo Qn,

3 Hadamard Code

The Hadamard code is a linear code which has Hamming Distance roughly
meets the Plotkin bound from lecture 4. If n = 27, then d = 271 (good) and
R= j;'jl (bad). The Hadamard Codes are described at the ends of the notes of
the previous lecture.

The Hadamard Code is a special case of a first-order Reed Muller code over

the field F.

4 Review of Reed Muller Codes

A Reed Muller code can be constructed based on polynomials of low degree on a
finite field F,. Let m and r be integers where m is thought of to be much larger

6-2

than r. Then the messages in this code are all m-multivariate polynomials P of
degree at most r where each variable has individual degree at most ¢ — 1. The
Reed Muller encoding of P is the evaluation of P on all x € F;* (the values of
P over all choice of values of the m variables). There are ("!") elements in the
message space.

For formal construction of the Reed Muller codes, see the scribe notes for
lecture 5.

5 Performance of Reed Solomon and Reed Muller
Codes

5.1 Reed Solomon Code

-Evaluate univariate polynomials of degree < k over F, and looking at the
coefficients. Code is an [n, k,n — k + 1], code with n < g¢.
Performance: r 4+ — 1 +e.

5.2 Reed Muller Codes

-Evaluate m-variate polynomials of degree < r (where m is thought of as much
greater than r) over F,, over the entire domain (F;’L)

-Individual degree of each variable is < ¢ — 1 (We arrange for this since
z? =g for all x € Fy).

Parameters of Reed Muller Codes

® N=4gq

o k= (m:f) if r < ¢, and (%)m (M) <k < (m:'r) for general r. If you
think of r as constant while m goes to infinity, the lower bound of (T) is
pretty good.

° Ifr:a(Q—1)+bwhereb<q,then5:q_a'(l_s)'

An explanation of for the values of r and ¢ can be found in the scribe notes
of lecture 5. Let’s now look at some examples, which we generate by plugging
in choice values into the parameters of the Reed Muller codes.

Example 1 Linear Polynomials (r =1).

e n=q"

e k=m-+1

ef=1-1
q

m—+1

e Number of codewords = ¢ =q-n

6-3

In the special case when ¢ = 2, we have § = % This is exactly the same
construction as the Hadamard Code. Since the Reed Muller encodes messages
as linear polynomials, we can write each such polynomial f as 2111 a;x; + ag,
where a; are constants and the x;’s are the m variables in the Reed Muller code.

We encode f by evaluating it at all points {a1,@a,...am}, a; € Fa. Then
the encoding is

Z;il a;0; + ag evaluated at all g, ag,. ..o € FY'

Let’s look at another example.

Example 2 Bivariate polynomials

Parameters: We establish that m = 2,7 = . Then

|3

e If g=/n, then 6 = 3.

This example demonstrates the tradeoff between rate and distance versus
alphabet size. In this example, our alphabet size is v/n, which is much smaller
than n, the minimum alphabet size required for Reed Solomon code (which is
the Reed Muller code for single variate polynomials): Reed Solomon obtains the
bounds % and % for R and § respectively, instead of % and % But ¢ would be
at least n in Reed Solomon as opposed to y/n in this example.

Because the alphabet of the codes are finite fields, and it is a reasonable prob-
lem to ask how one might construct large finite fields, the size of the alphabet
is a relevant consideration in coding theory. (Maybe).

Now let’s look at an example that is of significant interest in computational
complexity theory.

logn _
loglogn’ q=

Example 3 Let m = log®n,r = % log®n

(Example analysis incomplete)
Then

° 5:%
o ¢ =log’n.

The rate goes to 0, but we're interested in seeing how quickly it goes to 0.
Note that & > n'/3. But how should we precisely bound k? We would say
k> (5)" = (logn)™ein

n=qm,and so k >) (nl/Q)

Moral of the story:

e 0 = 1/2 (which is really good), |X| = polylog(n).

6-4

e k vs n relationship is polynomial.

(Place picture here with R and ¢ on the axes: Gilbert Varshamov bound,
for ¢ = 2).

6 Duals of (Linear) Error Correcting Codes

If C = [n, k,d], code over Fy, the dual of the code is the set

Ct={ze FyVy € C, (z,y) = 0}

where (z,y) is the standard dot product.

Because C* is the space of elements perpendicular to C, the dimension of
Ctisn—k. Thus C+ = [n,n — k,d],, where we have not said anything about
d yet.

Lemma 4 If G is the generator matrix for C' and H is the parity check matriz,
then G is the parity check matriz for C+ and HT is the generator matriz.

Proof Let x be an element of our message space. We note that the space
spanned by zH” has the right number of dimensions to be a candidate for the
space C*, and HT'GT = (GH)T = 0. It remains to show that (zH7 and 2'G
are perpendicular for all z, ' in the message space.

However,

(xH"2'G) = 2H"G"2' = (GH) 2’ = 0

completing the proof of our lemma. H

Now we would like to figure out the distance d in the dual code of C. Let’s
examine a few examples and their duals to try and figure this out.

Example 5 Reed Solomon Code

The Reed Solomon code is a Mazimal Distance Separable (MDS) code, meaning
that the singleton bound is tight. Recall that the Singleton bound states that
Ay(n,d) < ¢~ where A,(n,d) is the number of codewords in an F, block
code of length n with minimum distance d.

Lemma 6 The dual of Linear MDS code is MDS.

Proof Suppose C is a code with generator matrix G with columns ¢y, ca, . . . ¢,
This is a £ by n matrix. Note that in an MDS code, every linear combination
of the rows has Hamming weight at least n — k + 1.

By lemma 4, C* has GT as its parity check matrix. We wish to show now
that if C = [n, k,n — k + 1] code, then C+ = [n,n — k + 1,k + 1] code. That is,
every subset of k columns of G, the generator matrix, is linearly independent.
The proof is as follows:

6-5

Proof Suppose that some k columns are linearly dependent. Consider the
k by k submatrix M formed by these columns. Since the columns are linearly
dependent, the rank of M is less than k£ so the rows of M have some linearly
dependence. Therefore there exists some linear combination of the rows of M
that sums to 0, so we can use this same linear combination on the rows of G
whose sum has at least k 0’s, and thus has Hamming weight < n —k. But we've
established that any linear combination of the rows of G in an MDS code must
have Hamming weight at least n — k 4+ 1. Contradiction.
]

We’ve shown that the dual of an [n, k,n—k+1], code is an [n,n—k+1, k+1],
code, which is MDS as desired.
]

However, it turns out the dual of Reed Solomon codes are still Reed Solomon
codes, so we do not get any new codes from taking the dual of a Reed Solomon
code.

Now let’s turn our attention to the dual of Reed Muller codes.

Lemma 7 The dual of a Reed Muller Code is Reed-Muller.

If we have a Reed Muller code in the primal with F,, m,r, the dual of the code
has the same alphabet Iy, the number of variables will remain m. In the initial
Reed Muller code, we took the monomials of maximum degree r. If Reed Muller
code C' is generated by all monomials of degree < r, then we conjecture that C'*-
is generated by the set of monomials with degree < m(q — 1) —r. We leave it
as an exercise to verify that the sum of the dimensions of C' and our candidate
C+ is indeed ¢™.

Before we prove this conjecture, let’s look at a picture.

................. (Incomplete section) Suppose r = %q. Let’s look at all the
integer degree monomials we could have.

(Picture, bivariate polynomials, plotting the permissable exponents of = and
y. We look at the area of the square in the graph. The area of the dual
correpsonds to the complement of the primal in the picture).

Now let’s go back to our proof that the dual of a Reed Muller code C' is
Reed Muller, and in fact this dual is generated by the set of monomials with
degree < m(q—1) —r. To do this, we must first prove a property of finite fields.
Namely, summing a non-zero monomial in m variables with degree less than
m(qg — 1) over all possible values Iy gives 0. We leave it as an exercise to show
that it suffices to prove the next claim.

6.1 Some Properties of Finite Fields

Claim 8 If P,Q € Fqlz] and deg(P) + deg (Q) < ¢—1. Then 3, p P(a)-
Q(a) =0 (inTF,).

6-6

Proof Note: all equalities in the proof are for IF,.

We can expand P(z)Q(z) as the sum of monomials with degrees less than
q— 1. Therefore if we can show that ZaE]Fq z" =0 for all n < ¢g—1, then adding
some combination of these proves our claim.

Lemma 9 3 . 2" =0 whenn <q-1.

Proof Let oy, q,...q be all the elements in Fj,. Because F is a field (and
thus has inverses), we can show without too much difficulty that for any g € F,
that Boy, fag, ... Ba, is a permutation of a1, ..., for any S € F,. Namely,
this is true when 3 is a primitive root of IF;, meaning that ¥ = 0 & z = 0
(mod g—1). (The existence of primitive roots is a well-known property of finite
fields, and is asserted here without proof).

Since faq, Bag, . .. Bay, is a permutation of ay, ..., for any g € Fy, then
S oy = ¥ o
a€F, a€lF,
= > (B"—1a" =0
a€ly,

Since n < g — 1, then 8™ # 1 and thus ™ — 1 # 0. Therefore Zaqu a” =0
as desired. W

The lemma is proven, and therefore our initial claim is proven as well. Bl

Additionally, 329-2 o/ = 0 if @ # 1. This comes from noting that %°2 o’ =
0‘2:1_1 for oo # 1, and it is a well known fact of finite fields that any « # 0 € Fj,
satisfies o471 — 1 = 0.

6.2 Return to Proof that Dual of Reed Muller is Reed
Muller

Recall that the generator matrix G for a Reed Muller code with parameterse m
and r has columns corresponding to elements of F," representing each possible
input into our message (written as coeflicients of a polynomial), rows corre-
sponding to a monomial of degree < r, and entries corresponding to the val-
uation of the elements of Fy" corresponding to the column evaluated on the
m-variate monomial of degree < r corresponding to the rows.

We assert that a valid generator matrix G+ for C* consists of the same
construction but with each row corresponding to monomials of degree < m(q —
1) — r. The dimensions are correct, so from lemma 4, we only need to check
that G (GL)T = 0. However, each entry of G (GL)T is a sum of some monomial
of degree < m(q — 1), and so the proofs in the previous subsection allow us to
say each entry is indeed 0. Therefore the generator matrix for the Reed Muller
code consisting of polynomials of degree < m(q—1) —r is indeed a parity check

6-7

matrix of appropriate dimension for our original Reed Muller code consisting of
polynomials of degree < r. This shows that the dual of a Reed Muller code is
indeed a Reed Muller code.

6.3 How do we describe finite fields?

Finite fields of size ¢ are generally described by roots of a? — aVa € IF,. That
such roots form a finite field of size ¢ will not be proven here, but the result
can be found in any texts on fields. However, for the purpose of computing, we
would like to be able to explicitly construct finite fields of a particular size.

7 Constructive Codes

7.1 Case: Prime Fields: ¢ =p

When ¢ is prime, we can represent elements of F, by integers from 0 to p — 1,
adding and multiplying them using the rules of (mod p). However, if we want
to specify the approximate size of our field, then we are out of luck at this stage.

Suppose we want to find a prime between 2!~ and 2!. We can find such a
prime deterministically in time 2! and we can find it in randomized time with
poly(l). (Proofs omitted).

7.2 Non-prime Fields

It’s well known that the number of elements of a field must be the power of a
prime.

Suppose ¢ = p, given p and ¢. How can I construct F,?

There exist methods that can ”find” F, in deterministic time poly(t,p) and
randomized time poly(t,log p).

The most 'hands-on’ representation of F: is constructed by selecting an
irreducible polynomial g(x) € Fj[z] where deg g = ¢ and ¢ is monic. It is a
known fact of finite fields that F, can be represented as Fj[z]/g(x). Finding
this polynomial ¢ is used to obtain the bounds listed above. (Exact method
omitted).

There are a few other methods we can try.

One approach we might try is to find a class of irreducible polynomials and
use them to generate our finite field. One such example are the polynomials
37 2+ 1, which are irreducible for all s. (No proof given). This is not
great, since the degrees of these polynomials are powers of 3, which this method
can only construct fields of the form Fg’zs. But we can get a reasonable approx-
imation with a multiplicative factor of 3. These polynomials are nice to work
with since they are very sparse, and this gives us a very concrete way to find a
field of some approximate degree.

Let’s try to be a little more abstract, and develop some cleaner ways of
thinking about finite fields. You should always keep the following two methods
in mind.

6-8

Method 1 An incomplete representation.

F,¢+ is isomorphic to F; with a linear isomorphism that preserves multi-
plication by any element of F, (which has a natural inclusion into Fj: as the
multiples of p'~! in F,:. Such an isomorphism is called a F}, linear isomorphism.
The isomorphism respects addition and multiplication by F,. To spell it out
formally,

Let V be F}, linear isomorphism from Fj: to F;. Then

Vie+) =Via)+ V()

and for any o € F),, oV (a) = V(oa)
Method 2 Complete representation

The idea is to represent oo € F+ as a set of linear maps T'(«) operating on
FZ, where T satisfies the properties that

o T(a)T(B) = T(ap)
o T(a)+T(8) =T(a+§p).

(Bijective?) Representations T'(«) exist (though we will not prove this) and
can be represented as ¢t by ¢ matrices M (o) with entries in the field F},. The idea
of representing F),: as a linear map is an idea inherited from the mathematical
discipline of Representation Theory.

8 Teaser for next time

(I forgot to copy down what went here).

6-9

