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1 Overview

This lecture includes the following topics.

• Wozencraft Enzemble of Codes

• BCH Codes

• Working towards explicit answer of Binary Codes (Forney codes and Juste-
sen Codes)

2 Finite Field

Recall from last time that three different ways that we can represent finite filed
Fpt are

1. Via Polynomials : Fpt ∼= Fp[x]/q where q ∈ Fp[x] is a monic irreducible
polynomial of degree t.

2. Via Vector Space : Fpt ∼= Ftp, a linear isomorphism. That is, β ∈ Fpt ,
β 7→ Vβ , a vector in Ftp. In this isomorphism, we have Vβ + γVβ = Vβ+γβ
where α, beta ∈ Fpt and γ ∈ Fp.

3. Via Matrices : There exists a map from Fpt to Ft×tp which each element
of Fpt gets represented by a t × t matrix. That is α 7→ Mα. In this iso-
morphism, Mα+β = Mα +Mβ and MαMβ = Mαβ .

The second and third representations will be mainly used in this lecture.

3 Wozencraft Ensemble

3.1 Overview

Wozencraft ensemble is a collection of codes, all with rates 1
2 and most of them

have a good distance.

Definition 1 Wozencraft Ensemble is a collection of codes {Cα}α where Cα :
m→ (m,Mαm) for all F2k for each α ∈ F2k .
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We can see that each code Cα is a [2k, k, d]2 code where d varies from code
to code and the generator matrix for Cα is [Ik|Mα]. In the next section, we will
next show the bound for d.

3.2 Properties

We begin by proving the following claim.

Claim 2 For any 〈a, b〉 ∈ F2k
2 such that a 6= 0, there exists at most one α ∈ F2k

such that 〈va, vb〉 ∈ Cα.

Proof If 〈va, vb〉 is an element of Cα, then there exists m ∈ Fk2 such that
mMα = vaMα = vb. This implies that α = ba−1.

We will next obtain the bound for distances of codes.

Claim 3 The number of codes Cα of distance ≥ d is at least 2k−V ol(d−1, n).

Proof First, recall that since Cα is a linear code, we have4(Cα) = minc∈C,c6=0{wt(x)}.
As a result, Cα is of distance less than d if and only if there exists w ∈ F2k

2 such
that w 6= 0, wt(w) ≤ d− 1 and w ∈ Cα.

From Claim 2, we have, for any w ∈ F2k
2 such that wt(w) < d, w belongs to

at most one Cα; there are V ol(d− 1, n) such w s. As a result, there are at least
2k − V ol(d− 1, n) such Cα s that are of distance at least d.

Observation 4 If V ol(d− 1, n) < 2k, Claim 3 also implies that at least one of

the code has distance at least d. Since V ol(d − 1, n) ≈ 2nH( d
n ), the inequality

can be translated approximately to 1 − R > H(δ). This is approximately the
Gilbert-Varshamov bound.

3.3 Exercise

The following exercises are intended for students to test their thorough under-
standing of Wozencraft Ensemble.

1. Entend Wozencraft to codes of rate 1
l for a positive integer l.

2. Entend Wozencraft to codes of rate 1− 1
l for a positive integer l.

3. Let us consider ensemble {C∗α} where C∗α : m 7→ (m,m + α). Are these
good codes? Why or why not?
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4 Binary Linear Codes from Reed-Solomon Codes

Let n = q = 2l. Consider any Reed-Solomon [n, n− d, d]q code C ⊆ Fnq .

Define a map from Fnq → Fnlq by w → v by writing out the binary expansion

of each coordinate of w. Suppose that C gets mapped to C̃ ⊆ Fnlq . It is easy to

see that C̃ is a [nl, (n− d)l, d]2 = [n log n, (n− d) log n, d]2 code.

Let N = n log n. The code C̃ above is approximately a [N,N − d logN, d]2
code. In the case that d is a constant and N is large, it is not hard to check
that this code approximately the Gilbert-Varshamov bound.

5 BCH Codes

5.1 Overview and Construction

Named after Bose, Chaudhuri and Hocquenghem, BCH codes achieve [n, n −
dd−22 log n− 1e, d]2. The idea is also to expanding Reed-Solomon code.

In order to construct, we start by a Reed-Solomon code C ⊆ Fq2 which is a
[n, n− d, d]q code with n = q = 2l. Let CBCH = C ∩ Fq2.

It is not hard to see that linearlity holds for CBCH and the distance is at
least d. Next, we will show that the dimension is at least n−d(d− 2) log ne− 1.

The parity check matrix for C is shown below.

H =

1 α1 · · · αd−21
...

...
...

1 αn · · · αd−2n


We can also conclude that the parity check matrix is:

HBCH =

1 α1 · · · αd−21
...

...
...

1 αn · · · αd−2n


where Va ∈ Fl2 is a binary representation of a.

We have

Dimension ≥ n− number of columns

= n− d(d− 2) log ne − 1.

This is still not the bound that we promised. In order to get that bound,
first observe the following which is easily check by binomial theorem.
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Observation 5 Over Fpt , (x+ y)p = xp + yp.

Next, we will show that we can ignore the even power columns in the matrix
HBCH . This is because ∑

xiα
2j
i =

∑
x2ji x

2j

(From Observation 5) = (
∑

xjiy
j
i )

2.

As a result, the parity check matrix below is enough.

H ′BCH =


1 α1 α3

1 · · · α
2d d−2

2 e−1
1

...
...

...
...

1 αn α3
n · · · α

2d d−2
2 e−1

n


As a result, we get a code CBCH with k ≥ n− dd−22 e log n− 1 as intended.

5.2 Comparison to Hamming Bound and Gilbert-Varsharmov
Bound

Now, we will compare BCH codes to the Hamming Bound and Gilbert-Varsharmov
Bound when d is small.

Let V olq(d, n)
4
= Volume of ball of radius d in |Σ|n where |Σ| = q. The

Hamming Bound and G-V Bound can be written as

• Hamming : If C is (n, k, d)q code then, qn ≥ qkV olq(d−12 , n).

• G-V : If qn ≤ qkV ol(d− 1, n), then there exists a code (n, k, d)q.

As we have shown before, V olq(d, n) ≈
(
n
d

)
(q + 1)d ≈

(
en
d

)d
(q − 1)d. Using

this, the bounds become:

• Hamming : n ≥ k + d−1
2 log n− d−1

2 log d

• G-V : n ≤ k + d log n− d log d

This means that if d = o(n1/2−ε), then BCH is asymtotically better than
G-V or random code.

6 Forney Codes

Now, we turn to Forney codes which use concatenating technique.

Suppose that we have C1, a [n1, k1, d1]q code and C2, a [n2, k2, d2] code
where n1 = q = 2k2 . We can find define a code C1 ◦C2 by a composition of the
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C1 and C2. In this way, it is not hard to see that [n1n2, k1k2, d1d2].

This impliess that if C1 is of rate R1 and relative distance δ1 and C1 is of rate
R2 and relative distance δ2, then C1 ◦ C2 is of rate R1R2 and relative distance
δ1δ2. As a result, if C1 and C2 are asymtotically good then so is C3.

We can use Reed-Soloman code as C1 and G-V as C2. Even though C2

cannot be found in polynomial time of the size of C2, it can be found in poly-
nomial time of the size of C1 since n1 = q = 2k2 . Thus, the whole code can be
computed in polynomial time of q.

However, this is still somewhat not explicit enough in the sense that given
i, j we cannot find the i, j entry of the generator matrix G fast enough.

7 Justensen Codes

Consider the Forney code. In the second step, we use all the same codes. Why
don’t we use different codes?

If in the second step, we use different codes and we can gaurantee that most
of these codes have high distances, then we get a code with high distance. Yes,
we can use Wozencraft ensemble in the second step! One advantage of using
this is that we do not need to find a good code for the second step but instead
just use Wozencraft ensemble which can be found in a better runtime.
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