
6.440 Essential Coding Theory Mar 4, 2013

Lecture 8
Lecturer: Madhu Sudan Scribe: Josh Alman

1 Guest Lecture

The next lecture, on Wednesday March 6th, will be a guest lecture by Professor
Eli Ben-Sasson from the Technion. The topic will be List-decoding limits to
Reed-Solomon Codes. It will mainly consider the problem of, given a Reed-
Solomon code, finding points that have many codewords in a small ball around
them. The lecture will be a pertinent digression from the class, but we won’t
build off of its results in future lectures.

2 Today: Algebraic Geometry Codes

1. Motivation: ε−biased spaces

2. Algebraic Geometry Codes

(a) History and General Principle

(b) One Concrete Construction on Hermitian Curves (Using Bézout’s
theorem, and the trace and norm functions)

(c) General Results ([TVZ] bound, Garcia-Stichtnoth curves)

Today we will learn about codes from Algebraic Geometry. Since we won’t
have time to delve very deep into the field, we will use some results from Alge-
braic Geometry without proof later in the lecture.

3 ε−biased spaces

Today’s goal will be to design an ε− biased space. These spaces, other than
being useful in Error-Correcting Coding theory, are also useful in algorithm
design and the design of Probabilistically-Checkable Proofs. We will motivate
them more later.

Definition 1 An ε−biased space is a linear binary code C ⊆ Fn2 such that:

1. C has distance
(
1
2 − ε

)
, and,

2. The all 1s vector, 1n ∈ C.

The goal, of course, is to make the dimension k as large as possible.
Note: In the literature, one might say ‘k−ε−biased bits’ to refer to a random

column of the k × n generator matrix of an ε−biased space.
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3.1 Existential Results

Consider a random linear code of length n. By the Chernoff tail bound, two
codewords disagree in at least

(
1
2 − ε

)
n coordinates with probability 1− 2−ε

2n.
Hence, by the probabilistic method, there must exist codes with dimension as
large as ε2n (from the exponent of 2). Alternatively, given k and ε, there exists
an ε−biased space with n = O

(
k
ε2

)
.

We can also apply the bounds from previous lectures to ε−biased spaces.
Indeed, by the Plotkin or Elias bounds, we get that k = Ω

(
n
ε

)
. There is also

a better bound which we might not get to proving in class, called the Linear

Programming bound.1 It gives that k = Ω
(

n
ε2 log 1

ε

)
.

3.2 Constructive Results

We use the concatenation technique from last lecture to give two examples of
ε−biased spaces. Recall that if C1 is a [n1, k1, d1]q code, and C2 is a [n2, k2, d2]2
code, with 2k2 ≥ q, then C1 ◦ C2 is a [n1n2, k1k2, d1d2]2 code.

3.2.1 Reed-Solomon and Hadamard codes

First, consider the concatenation of a Reed-Solomon code and a Hadamard code.
As before, we can find a [n, 2εn, (1−2ε)n]n Reed-Solomon code, and we can find
a [n, log2 n, n/2]2 Hadamard code. Their concatenation gives a code that is:[

n2, 2εn log n,

(
1

2
− ε

)
n2

]
2

.

Rewriting in temrs of N = n2, we have a code that is:[
N, ε
√
N logN,

(
1

2
− ε

)
N

]
2

.

Hence, we get that K = ε
√
N logN , and so N ≈ K2

ε2 .

3.2.2 Reed-Solomon and Random codes

We now consider the concatenation of a Reed-Solomon code and a Random
code. We can find a [n, 2εn, (1− 2ε)n]n Reed-Solomon code, and we can find a
[`, log2 n, (1 − ε)/2]2 Random code when ` = O(log n/ε2). Their concatenation
gives a code that is: [

n`,
1

2
εn log n,

(
1

2
− ε

)
n`

]
2

.

Rewriting in temrs of N = n`, we have a code that is:

1It is also named the MRRW bound after the authors, or the JPL bound after their
workplace.
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[
N,Ω(ε3N),

(
1

2
− ε

)
N

]
2

.

Hence, we get that K = ε3N , and so N = K
ε3 .

3.2.3 Summary

The best known ε−biased space has:

n =
k

ε2
.

However, in general, the best explicit codes we know are the two we just
derived, with:

n =
k2

ε2
, or n =

k

ε3
.

We will now examine a code by Ben-Aroya and Ta-Shma, which concatenates
an Algebraic Geometry code with a Hadamard code. It will achieve:

n =
k

5
4

ε
5
2

.

In many applications, we think of ε = 1
k , so that our codes from before

achieved n = k4, while this new code will achieve the improved result of n = k
15
4 .

4 Algebraic Geometry Codes

4.1 Main Idea

We typically think of codes as functions f : Fmq → Fq. In Algebraic Geometry
codes, we instead pick a subset S ⊆ Fmq which has nice geometric properties,
and instead consider functions f : S → Fq.

For instance, a common choice for S is to selectm−1 polynomials p1, · · · , pm−1,
and then set

S = {x̄ ∈ Fmq | p1(x̄) = p2(x̄) = · · · = pm−1(x̄) = 0}.

Both the message space and the coordinates of an Algebraic Geometry code
need to be carefully picked to satisfy algebraic geometric properties.

4.2 History

The idea of Algebraic Geometry codes was first conceived by V. D. Gioppa
in the late ‘70s. The first breakthrough construction was made by Tsfasman,
Vladuts, and Zink in 1982. When q is a square and prime power, then they
designed a code that is:
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[
n, k, n− k − n

√
q − 1

]
q

.

In particular, this achieves R+δ ≥ 1− 1√
q−1 . This is better than the random

code construction, since here q grows polynomially in the gap 1
1−(R+δ) instead

of exponentially in it. Moreover, when q is big enough (q ≥ 49), this beats the
Gilbert-Varshamov bound.

We will now develop some Algebraic Geometry theory. We will then use it
to describe their code, which is based on the Hermitian curve.

4.3 Algebraic Geometry Ingredients

To analyze Tsfasman, Vladuts, and Zink’s code, we will need to use Bézout’s
theorem, and the Trace and Norm functions from Algebraic Geometry.

4.3.1 Bézout’s theorem

We will need one direction of Bézout’s theorem. Although it can be proved by
elementary methods, we state it without proof:

Theorem 2 If F is a field, and f, g ∈ F[X,Y ] are polynomials with no common
factors, then

|{(α, β) ∈ F× F | f(α, β) = g(α, β) = 0}| ≤ deg(f) · deg(g).

Example: Since an ellipse and a parabola both have degree 2, they can have
at most 4 intersection points.

4.3.2 Trace and Norm functions

Definition 3 The trace, Tr, and norm, N , are functions Tr,N : Fqt → Fqt
given by:

Tr(x) = x+ xq + xq
2

+ · · ·+ xq
t−1

,

N(y) = y1+q+q
2+···+qt−1

.
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When t = 1 and q is a prime, these functions are not interesting, as they are
both equal to the identity. However, they are more interesting when t > 1, and
we will use their properties when t = 2 for our Hermitian codes.

First, note that the trace function is linear, while the norm function is mul-
tiplicative. To see that Tr is linear, recall that when working over Fqt , we have
that (a+ b)q = aq + bq.

Next, the images of both the trace and norm functions are in Fq, in the
following sense: We usually think of Ftq as a vector space over Fq. However, we
can also view Fq ⊆ Fqt , as:

Fq = {α ∈ Fqt | αq = α}.

Since αq = α is a degree q polynomial, it has at most q roots. In fact, it
is not hard to see that it has q roots that are closed under multiplication and
addition, justifying the above. Now, since any x ∈ Fqt satisfies xq

t

= x, we have
that for any x ∈ Fqt :

(Tr(x))q = (x+ xq + xq
2

+ · · ·+ xq
t−1

)q = xq + xq
2

+ xq
3

+ · · ·+ xq
t

= Tr(x),

and so the image of Tr is indeed in Fq. A similar argument works for N .
Finally, Tr is a perfect qt−1 to 1 map, while N is a perfect 1+q+q2+· · ·+qt−1

to 1 map. First, consider Tr. It is a polynomial of degree qt−1, and so it maps
at most qt−1 points to each element of Fq. But, there are qt total points in the
domain, and only q in the range, so it must be a perect map. Again, a similar
argument works for N .

To summarize, the functions satisfy the following properties:

Trace Norm
Linear (Tr(x+ y) = Tr(x) + Tr(y)) Multiplicative

Image ⊆ Fq Image ⊆ Fq
perfect qt−1 → 1 map perfect 1 + q + q2 + · · ·+ qt−1 → 1 map

4.4 Hermitian Codes

The Hermitian code is a code on the Hermitian curve S ⊆ F2
q2 given by:

S = {(x, y) ∈ F2
q2 | xq + x = yq+1} = {(x, y) ∈ F2

q2 | Tr(x) = N(y)}.

It is parameterized by some r ≤ q, and its message space is given by {f ∈
Fq2 [X,Y ] | deg(f) ≤ r}. Its encoding is by evaluations of the polynomials.

4.4.1 Parameters of Hermitian Codes

Let us analyze the parameters of Hermitian codes. We first find the size of S:
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Lemma 4 |S| = q3.

Proof For each of the q2 choices of β ∈ Fq2 , let γ = N(β) ∈ Fq. Then, there

are q choices of α ∈ Fq2 such that Tr(α) = γ, since Tr is a perfect map. This
gives a total of q2 × q = q3 choices for (α, β) ∈ S.

We next look at the distance of the code. Let R(x, y) = Tr(x) − N(y), so
that S = {(x, y) | R(x, y) = 0}. Then, R has a property that will be convenient
in conjunction with Bézout’s theorem, that we state without proof:

Lemma 5 R is irreducible.

Using this, we get that:

Lemma 6 The distance, d, of the Hermitian code, satisfies d ≥ q3 − r(q + 1).

Proof Fix any f ∈ Fq2 [X,Y ] of degree r. Since R has degree q+1 > r, and R
is irreducible, R and f cannot share any factors. Hence, by Bézout’s theorem,
we get that:

|{(α, β) ∈ Fq2 × Fq2 | f(α, β) = R(α, β) = 0}| ≤ r(q + 1).

Hence, d ≥ n− r(q + 1) = q3 − r(q + 1) as desired.

Finally, by counting polynomials, we see that k =
(
r
2

)
≥ r2

2 . Hence, the code
we get is of: [

q3,
r2

2
, q3 − r(q + 1)

]
q2
.

4.5 Concatenating Hermitian and Hadamard codes

The Hermitian code does not meet the desired bound just yet. First, we need
to concatenate with the Hadamard code

[
q2, log2 q

2, 12q
2
]
2
. Although we could

be more careful and use a dimension of less than log2 q
2, it would give us a

negligible improvement so we do not bother. Then, the resulting code is of:[
q5, r2,

q5

2

(
1− r

q2

)]
2

.

If we set k = r2 and ε = r
q2 , then we get that r =

√
k, so q = k1/4

ε1/2
, and thus

n = q5 = k5/4

ε5/2
, which is the desired bound.2

2Note that for our parameter settings we needed that ε ≤ 1√
k
. If ε were very small, like a

constant, then using the construction from before with n = k
ε3

would give a better result.
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4.6 Garcia-Stichtenoth Codes

Like with the Hermitian Code, Algebraic Geometry codes in general are con-
structed in three steps:

1. Pick a curve.

2. Choose functions to evaluate on the curve.

3. Prove a distance bound, usually involving some complicated Algebraic
Geometry.

We briefly give a glimpse into another such code, the Garcia-Stichtenoth
Code, published in 1999.

First, fix and m and any prime power q. Then, for each i ∈ {1, 2, · · · ,m−1},
define the polynomial pi : Fmq2 → Fq2 by pi(x̄) = N(xi)−Tr(xi)·Tr(xi+1). Then,
we will work over the curve S ⊆ Fmq2 , with:

S = {x̄ ∈ Fmq2 | p1(x̄) = · · · = pm−1(x̄) = 0}.

It is an easy exercise to show that:

Lemma 7 |S| ≥ qm+1.

Setting n = qm+1, our codes will be determined by a basis of functions
b1, b2, · · · , bn : S → Fq2 .n particular, for i ∈ {1, · · · , n}, we will have that:

Ci = span(b1, · · · , bi).

We state some results, without proof, about these codes:
First, while we clearly have that Ci ⊇ Ci−1 for each i, we in fact get that

|{i | Ci = Ci−1}| ≤
n

q − 1
.

n
q−1 is called the genus of the curve. The Garcia-Stichtenoth codes act very
similarly to Reed-Solomon codes except in these gaps.

Second, we have for all i that ∆(Ci) ≥ n− i.
Finally, if for x, y ∈ Fnq2 , we write:

x ? y = (x1y1, x2y2, · · · , xnyn),

then we have that for all x ∈ Ci and y ∈ Cj , then x ? y ∈ Ci+j . The code words
act similarly to polynomials.

Combining these results, we get codes over Fq2 that have R + δ ≥ 1− 1
q−1 .

This is the same bound as before since we are working over Fq2 so that q is the
square root of the field size.
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5 Conclusion

To briefly return to ε−biased spaces, we can show as an exercise that the con-
catenation of an Algebric Geometry code and a Hadamard code can give an
ε−biased space.

This concludes our introduction of algebraic codes. Starting next week, we
will begin with the decoding of algebraic codes.
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