
6.440 Essential Coding Theory Mar 13, 2013

Lecture 11
Lecturer: Madhu Sudan Scribe: Chiheon Kim

In this lecture, we will discuss how to decode concaternated codes. We start
with a simple decoding algorithm and discuss the better algorithm of Forney.
Using this algorithm, we can achieve the capacity on the binary symmetric
channel of Shannon. Beforehand, we need to finish the discussion in the last
lecture.

1 Review: Error-locating Pairs Algorithm

Last time we discussed how to decode Reed-Solomon codes. More explicitly, we
wanted to find “message” m(x) from the evaluation (β1, · · · , βn) on n distinct
points (α1, · · · , αn). For, we first find a pair of polynomials (N,E) 6= (0, 0) with
degE ≤ t and degN < k + t such that N(αi) = E(αi)βi for all i = 1, · · · , n. If
N/E is again a polynomial, we return N/E = m(x). By this algorithm, we can
correct s erasures and t errors provided that 2t+ s < n− k in polynomial time.

We may abstactize this scheme: think that N and E are from other codes
under some conditions. Define E ∗ C = {(e1c1, · · · , encn) : e ∈ E, c ∈ C}, and
assume E ∗ C ⊂ N . How can we decode? For given β = (β1, · · · , βn), consider
the following algorithm.

1. As we did for Reed-Solomon codes, find e ∈ E and w ∈ N such that
(e, w) 6= (0, 0) and eiβi = wi for all i. ei = 0 if βi is corrupted.

2. Set βi to be “?” if ei = 0.

3. Decode the modified β by erasure-decoding.

To correct t errors, we need the followings:

1. For the existence of nonzero e ∈ E such that ei = 0 on at most t places,
we need dim(E) > t.

2. For any (e, w) satisfying the first step, if c ∈ C is the original codeword,
then e ∗ c = w. Note that ∆(e ∗ c, e ∗ β) ≤ ∆(c, β) ≤ t. So, it is enough to
have ∆(N) > t to guarantee e ∗ c = w = e ∗ β.

3. To use erasure-decoding, we need to assure that β satisfying e ∗ β = w
is unique. Such β could disagree at the places that ei = 0, so at most
n−∆(E) places. Hence, we can guarantee the success of the third step if
∆(C) > n−∆(E).

11-1



Note that those three are simple linear algebraic conditions. The only non-
trivial condition to achieve is E ∗ C ⊂ N . If we randomly select N and E,
then dim(N) is roughly dim(E) dim(C). We need dim(E) and ∆(N) both to be
large, but ∆(N) is small if its dimension is large. In the case of Reed-Solomon
codes, we had dim(N) = dim(E) + dim(C). The only known other examples
are algebraic geometry (AG) codes.

2 Decoding Concatenated Codes

2.1 Simple decoder

Recall the definition of concatenated codes. From “outer code” [N,K,D]Q and
“inner code” [n, k, d]q with Q = qk, Concatenating two leads us to a new code
[Nn,Kk,Dd]q. To be precise, we encode message m = (m1,m2, · · · ,mK) ∈ FKQ
as follows:

1. Encode m with outer code and obtain (x1, x2, · · · , xN ) ∈ FNQ .

2. Encode each alphabet xi ∈ FQ (as a string in Fkq ) by inner code to have
yi = (yi1, · · · , yin) where yij ∈ Fq.

3. Return (y11, · · · , y1n, · · · , yN1, · · · , yNn).

If we receive (r11, · · · , rNn), how can we decode it? The simplest idea is
by brute force to find zi ∈ FQ such that ∆(Einner(zi), ri) is is minimum, and
decode (z1, · · · , zN ) ∈ FNQ . If the outer code was Reed-Solomon, we can decode
it in poly(N), and inner code will take poly(N,Q) to find zi.

How many errors would it correct? In each block, we can correct < d−1
2

errors. Also, we can correct < D−1
2 blocks which contains more than d−1

2

errors. Hence, this algorithm can correct < (D−1)(d−1)
4 errors. This tells us the

concatenated code is [Nn,Kk,Dd/2]q. In 1966, Forney gave a better algorithm
for decoding concatenated codes which can correct Dd/2 errors. He used this
idea to achieve Shannon capacity in constructive way.

2.2 Forney’s constructive Shannon bound

Binary symmetric channel BSC(p) with 0 < p < 1 is the channel that flips
each bit with probability p. We have seen that if k = 1−H(p)− ε, then there
exist an encoder E : {0, 1}k → {0, 1}n and a decoder D : {0, 1}n → {0, 1}n
such that Prη[D(E(m) + η) 6= m] ≤ exp(−ε10n) for every message m. In this
context, E and D are chosen completely random. Can we construct such E and
D in polynomial time? Before we see what Forney did, let’s see how we can get
polynomial bound, namely n−100. First, find a good code with message length
100ε−10 log n by brute force. We can do it in polynomial time. Then divide the
message into blocks with length 100ε−10 log n, and encode each block separately.
Decoding will fail with probability at most n−100, so the entire decoding will
fail with probability at most n−99 by union bound.

11-2



How can we even reduce n−100 to an exponential bound? Forney used
concatenated codes to resolve this problem. Let the outer code be Eouter :

F(1−ε)N
Q → FNQ which is Reed-Solomon (hence Q = N), and inner code be

Einner : Fk2 → Fn2 with k = (1−H(p)− ε)n and Q = 2k. Then,

• For each i = 1, · · · , N , Pr[ith block is decoded incorrectly] ≤ exp(−εn).

• The probability that the number of incorrectly decoded block exceeds
εN/2 is less than 2−εN/2. (Chernoff)

It perfectly runs in polynomial time if we only focus on N . How about ε?
We need k ≥ 1/ε2, so running time would be ≥ 21/ε

2

, which seems bad. Also,
he wanted to replace −εN/2 by −εN , which is analogous to find a decoder for
concatenated codes which can correct Dd/2 errors instead of Dd/4.

2.3 Generalized minimum distance decoding

The main idea of Forney was that treating erasures is easier than treating errors.
Recall that we can correct s erasures and t errors if s+2t < D for Reed-Solomon
codes. Here, we will use the same notations as in section 2.1, and assume that
the outer code is a Reed-Solomon code.

Let êi be the actual number of errors in block i, i.e., ∆(yi, ri), and let ei
be the number of errors “seen” in block i, i.e., ∆(ri, Einner(zi)). We want to
decode correctly if

∑
êi <

Dd
2 . For, we just erase each block with probability

min{1, ei
d/2}, and use erasure-decoding for outer code. If the number of erased

blocks plus twice the number of error blocks (which are not erased but wrong)
is at most D in expectation, we can correct the code. The following claim will
guarantee it.

Claim 1 Set Ai = 1 if block i is erased, and Bi = 1 if block i is not erased but
it is wrong (xi 6= zi). Then, Exp[Ai + 2Bi] ≤ 2êi

d .

Proof We have two cases: zi = xi or zi 6= xi. For the first case, note that
ei = êi and Bi = 0. Hence Exp[Ai + 2Bi] = Pr[Ai = 1] = 2ei

d = 2êi
d . For

the latter case, note that êi ≥ d − ei since ∆(yi, Einner(zi)) ≥ d. We have
Pr[Ai = 1] = 2ei

d and Pr[Bi = 1] = 1−Pr[Ai = 1] = 1− 2ei
d , so Exp[Ai+ 2Bi] =

2− 2ei
d ≤ 2− 2(d−êi)

d = 2êi
d .

By the claim, we get Exp[
∑
i(Ai + 2Bi)] ≤ 2

d

∑
i êi < D, as desired.

This algorithm is not deterministic. How can we derandomize it? Actually
we didn’t use any independence between those Ai’s. Hence, we may use only
one random threshold x ∈ [0, 1] to determine each block to be erased (x ≤
2ei/d) or not (x > 2ei/d). Further, we can try every possible threshold to get
deterministic algorithm.

11-3


