
6.440 Essential Coding Theory Mar 18, 2013

Lecture 12 DRAFT
Lecturer: Madhu Sudan Scribe: Efrat Engel

In this lecture we will talk about list decoding. The plan is:

• Combinatorics

• Algorithms (for Reed-Solomon codes)

1 List Decoding Combinatorics

We use list decoding of codes to be able to correct more than d−1
2 errors. A list

decoding is considered good if

• It outputs a small list (poly(n))

• The list should include the transmitted message

Definition 1 A code C ⊆ Σn is (ρ, L)-list decodable if for any y ∈ Σn we have
|{x ∈ Σn|∆(x, y) ≤ ρn} ∩ C| ≤ L.

In this class we will ignore the parameter L, and assume it is poly(n).
How does ρ correspond to R, δ? For any code, we have ρ ≥ δ

2 (Hamming

bound). We can also prove ρ ≥ 1 −
√

1− δ (Johnson bound when |Σ| → ∞).
Note that when δ → 0 this is about the same as the Hamming bound. For
|Sigma| = 2, the Johnson bound gives ρ ≥ 1

2 (1−
√

1− 2δ). For a large alphabet,
we know δ can tend to 1, so ρ can get pretty good. We will be interested in
finding ρ ≥ 1−

√
1− δ.

Rate vs. list decodability: Clearly we can’t give lower bound for ρ based
on R for any code, because the rate of a code can be made arbitrarily large
by adding redundancy, but we can give existential results. For any code C,
we have R ≤ 1 − Hq(ρ), so good list decoding implies not very good rate
(this is reminiscent of the Gilbert-Varshamov bound but better, and it follows
from Shannon’s converse by picking one solution from a given list - this will be
correct with some probability). On the other hand, for any ε there exist codes
with R ≥ 1−Hq(ρ)− ε (when q → 0 this is about 1−ρ− ε). The simplest proof
is by a random code - exercise. For linear codes this is a more recent result, and
basically random codes also work in that case.

12 DRAFT-1

2 List Decoding for Reed-Solomon Codes

2.1 The Basic Algorithm

We will now describe a list decoding algorithm for Reed-Solomon codes that was
proposed by Madhu Sudan in the late 90’s. Consider a Reed-solomon code with
degree parameter k = n

1
3 (very redundant). Recall that regular error correcting

algorithms require that half of the received information (half of n−n 1
3) is correct.

We want to use list decoding to correct n− n 5
6 errors (call this n

5
6 agreement)

to achieve the Johnson bound.
The list decoding problem for Reed-Solomon codes: For input

• Fq, n, k (the code parameters)

• α1, ..., αn (the points where the polynomial is evaluated)

• β1, ..., βn (the received message)

• The size of the agreement a (which we will bound later)

Output all polynomials P such that deg(P) < k and |{i|P (αi) = βi}| ≥ a.
How do we approach such a task? Consider the set of points (αi, βi) in F2

q.
The Berlekamp-Welch algorithm tried to “explain” these points by claiming
that all the points satisfy the equation N(x) = yE(x) and then substitute
them. Instead, we will try to forget about the field and the extra structure
and simply find a non-zero polynomial Q(x, y) such that Q(αi, βi) = 0 for all i,
hoping that this would help us find the polynomials P . Some intuition as to why
this should work - Suppose there exist two polynomials P1(x), P2(x) such that
half of the points satisfy y − P1(x) = 0 and the other half of the points satisfy
y−P2(x) = 0. Then all the points satisfy the equation (y−P1(x))(y−P2(x)) =
y2 − (P1 + P2)(x)y + (P1P2)(x) = 0.

Lemma 2 Let α1, ..., αn, β1, ..., βn be such that (αi, βi) 6= (αj , βj) for all i.
The there exists a polynomial Q(x, y) with degx(Q), degy(Q) ≤

√
n such that

Q(αi, βi) = 0 for all i.

Proof Write Q(x, y) =

√
n∑

j,l=0

qjlx
jyl and solve for the indeterminates qjl.

There are (
√
n+ 1)2 indeterminates and substituting each point (αi, βi) in the

equation Q(x, y) = 0 gives one homogeneous linear equation (a total of n equa-
tions), so by dimension counting there exists a non-zero solution (in fact, there
are many non-zero solutions). Moreover, finding such a solution can be done
efficiently, because it is simply solving a system of linear equations.

What do we do next? consider the intuition example above. Suppose we
found R(x), S(x) such that y2+R(x)y+S(x) = y2−(P1+P2)(x)y+(P1P2)(x) =
(y − P1(x))(y − P2(x)), how could we find P1, P2? By factoring out polyno-
mial. Note that polynomials have unique factorization, and that factorization

12 DRAFT-2

of bivariate polynomials can be done efficiently. Given Q(x, y) ∈ Fpt [x, y] with
deg(Q) ≤ D, it can be factored in time poly(p, t,D) by a deterministic algo-
rithm, or in time poly(log(p), t,D) by a probabilistic algorithm (see the work of
Lenstra, Kaltofen, Gregorier).

Lemma 3 Suppose

• Q(x, y) is a non-zero polynomial with degx(Q), degy(Q) ≤ D

• Q(αi, βi) = 0 for all i

• P (x) is a polynomial with deg(P) < k

• Let A = {i|P (αi) = βi}, |A| ≥ a

Then (y−P (x))|Q(x, y), provided that a is at least some value (to be determined
later).

Proof If we wanted to prove that (y− η)|Q(y), we could do that by verifying
that Q(η) = 0. Similarly, in order to prove that (y − P (x)|Q(x, y), we verify

that Q(x, P (X)) = 0. Let g(x) = Q(x, P (X)) =
D∑

j,l=0

qjlx
jP (x)l, then since

deg(P) < k, we get that deg(g) < (k + 1)D. In order to prove that g(x) is
identically zero, it suffices to show that it vanishes on (k + 1)D points. Note
that for i ∈ A we have g(αi) = Q(αi, P (αi)) = Q(αi, βi) = 0, hence the proof is
complete provided that |A| = a ≥ (k + 1)D.

For k = n
1
3 , setting D =

√
n (by Lemma 1) we get the requirement a ∼ n 5

6 .
We can now describe the list decoding algorithm:

1. Find non-zero Q(x, y) such that degx(Q), degy(Q) ≤
√
n and Q(αi, βi) = 0

for all i.

2. FactorQ(x, y) and report all polynomials Pj(x) such that (y−Pj(x))|Q(x, y)
and deg(Pj) < k.

2.2 Problems and Improvements

The construction above does not work for k >
√
n, because in that case it

requires more agreement than the number of points. However, this can be fixed
as follows: Note that in Lemma 1, we only used the degree of Q to bound the
number of its coefficients. If we pick degy(Q) ≤ L and degx(Q) ≤ n

L for some
L then Lemma 1 still works. If we write degy(Q) ≤ L, degx(Q) ≤ D in Lemma
2, then we get deg(g) < D + kL (and we require a > deg(g)). Hence if we pick

L =
√

n
k and D = n

L =
√
nk then the construction above works and for k = n

1
3

we get a = 2n
2
3 - an improvement.

?? another improvement by picking different monomials in Q ??

12 DRAFT-3

The above algorithm proves that Reed-Solomon codes are (1−
√

2k
n ,
√

2k
n)-

list decodable. Can we prove this combinatorially (i.e. not through an al-
gorithm)? The answer is yes. Suppose p1(x), ..., pL(x) are a list of solutions
for the list decoding problem. Define Aj = {i|pj(αi) = βi}. Then |Aj | ≥ a,
|Aj ∩Al| ≤ deg(pj), deg(pl) < k (two distinct polynomials cannot agree on more

points than their degree) and clearly |
⋃l
j=1Aj | ≤ n. We can use an inclusion-

exclusion bound to get n ≥ |
⋃l
j=1Aj | ≥

l∑
j=1

|Aj | −
∑
j<l

|Aj ∩ Al| ≥ La −
(
L
2

)
k,

which implies an upper bound for L that comes out exactly as required.
Consider the following setting: Suppose each pj meets each pl exactly k− 1

times and all the intersection points are distinct, and let the αi’s be exactly all
the points of intersection. Then n =

(
L
2

)
(k − 1) and a = (L − 1)(k − 1). In

this case, the inclusion-exclusion bound doesn’t give anything, and so does the
algorithm (the algorithm doesn’t find the polynomial). In order to handle this
situation, we can fix the algorithm by requiring that Q has zeroes with high
multiplicity m at the points (αi, βi) in step 1. With the improved algorithm,

Reed-Solomon codes are (1−
√

k
n , poly(n))-list decodable.

Note that we now have more constraints on Q (3? in the above setting), so we

need to require degx(Q), degy(Q) > 3n. Pick degx(Q) <
√

3nk, degy(Q) <
√

3n
k ,

then we get deg(g) < 2
√

3nk, and g(αi) will now be a zero of multiplicity 2.
This means that it suffices to have less zeroes αi, so we can require |{i|P (α) =
βi}| >

√
3nk. Thus we have achieved ((1−

√
1− δ), poly(n))-list decodability.

In the next lecture we will discuss folded Reed-Solomon codes, that are
(δ − ε, poly), or in fact (1−R− ε, poly).

12 DRAFT-4

