
6.440 Essential Coding Theory April 17, 2013

Lecture 18
Lecturer: Madhu Sudan Scribe: Sam Elder

Today: Polar codes: decoding and speed of polarization (on BEC).
Scribes are needed for all future lectures; e-mail Madhu.
The main point of this class will be to prove the following theorem.

Theorem 1 (Arikan ’07, Guruswami-Xia ’13). There exists a polynomial f such that for all ε > 0 and
0 < p < 1/2, there are encoding and decoding schemes for BSC(p) of rate 1 −H(p) − ε such that encoding
and decoding take time f(1/ε) (and therefore, the length is poly(1/ε)), and the decoding error is probability
≤ exp(−(1/ε).49).

If we had only achieved a constant probability of error, that would have been new to us, but we can do
better, like this. The hard part here is getting an algorithm in 1/ε.

As we talked about last time, these are related to polar codes, which are related to the polarization
phenomenon we saw last time: If we start with two bits x1, x2 and get out bits y1 = x1 ⊕ x2 and y2 = x2

with H(x1) = H(x2) = H(p), then H(y1) = H(2p − 2p2) > H(p), so H(y2|y1) < H(p). That simply
follows from the fact that these must sum to 2H(p). Notice that we’re not talking about H(y2) itself, but
conditioning on y1.

We want to start with bits u1, . . . , uN and polarize them to x1, . . . , xN , then send the xi through a binary
symmetric channel, getting out y1, . . . , yN . So what we want to know is H(ui|u1, . . . , ui−1, y1, . . . , yn). We’d
like this to be small, so in other words, ui is very likely 0 or very likely 1.

So we’re going to pair our bits up and xor them like this. We then take the first bits from result, those
with higher entropy, and recursively apply the encoding En−1 on those, and do the same with the second
bits. We keep going until we’ve distinguished all of the bits.

Now we won’t be describing how to find it, but there will be some cutoff where the entropy will sharply
go from 0 to 1, i.e.

Pr
i←[n]

[H(ui|u1, . . . , ui−1, y1, . . . , yN ) ∈ (δ, 1− δ)]→ 0.

That is, almost all of the bits are either completely determined or completely undetermined from the previous
ones. On the other hand, we also know that

N∑
i=1

H(ui|u1, . . . , ui−1, y1, . . . , yN ) = H(u1, . . . , uN |y1, . . . , yN )

= H(x1, . . . , xN |y1, . . . , yN ) = nH(p).

So this tells us that the fraction of i for which H(ui|u1, . . . , ui−1, y1, . . . , yN ) > 1 − δ is ∼ H(p). These are
the bits that you can’t figure out from the rest. To make this a good error-correcting code, we’ll take exactly
those i for which this is greater than δ, which will also be a ∼ H(p) fraction of the total. Call this set of
bits F , for frozen. We don’t look too carefully at what subset of bits these are.

Our encoding procedure is to take the message and map it to [N ] − F . Set the remaining Ui (in F ) to
0, and apply the transformation to get the encoding X1, . . . , XN .

The decoding procedure will be the following: For i← [N ], we need to determine the value of ui. If i ∈ F ,
then we know ui ← 0. On the other hand, if i 6∈ F , we compute the probability that ui = 0 conditioned on
y1, . . . , yN and u1, . . . , ui−1. If this probability is greater than 1/2, we set it to 0 and continue; otherwise,
set it to 1 and continue.

If we make one mistake during these steps of decoding, that could be a big problem for the rest of the
bits. But we only care about when we get it exactly right, and we’ve already deviated if we make that one
mistake. What we want to show is that the probability that this decodes correctly is as high as we want.
We’ll find that it’s very unlikely that we make a mistake at any stage, and then we’ll use the union bound
on all of these possible errors.
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Now we need to estimate the probability of equalling 0 and so on. Given an arbitrary linear transform,
we wouldn’t easily be able to compute these probabilities, but this transform has a nice structure that we’ll
be able to take advantage of. Let’s define Pu1,...,ui,y1,...,yN

to be the probability of U1 = u1, . . . , Ui = ui, Y1 =
y1, . . . , YN = yN , where the capital variables are a way of denoting the random variables that those bits are
assigned to. By Bayes’ Rule, we get

Pr[Ui = ui|u1, . . . , ui−1, y1, . . . , yN ] =
Pu1,...,ui,y1,...,yN

Pu1,...,ui−1,y1,...,yN

.

Let’s imagine one step of our algorithm. Let our bits be u1, . . . , uN , going to v1 = u1 ⊕ u2, v2 = u2,
and so on, and then the odd-numbered bits go to one encoding and the even-numbered bits go to another
smaller encoding, eventually yielding (respectively) y1, . . . , yN/2 and yN/2+1, . . . , yN .

If i is even, then after the u1, . . . , ui combine in pairs into v1, . . . , vi, half of the results go to the odd
encoder and the other half to the even encoder. Therefore, if we denote the probabilities of the n-level
encoder with P (n), we get

P (n)
u1,...,ui,y1,...,yN

= P
(n−1)
u1⊕u2,u3⊕u4,...,ui−1⊕ui,y1,...,yN/2

× P (n−1)
u2,u4,...,ui,yN/2+1,...,yN

.

When i is odd, we can just reduce to the even case:

P (n)
u1,...,ui,y1,...,yN

=
1

2

(
P

(n)
u1,...,ui,0,y1,...,yN

+ P
(n)
u1,...,ui,1,y1,...,yN

)
.

Of course, you can always do this sort of expansion, but this is nice because we don’t have to do too much
of it: Just two terms to sum for the odd values. Then for the base case, the binary symmetric channel gives
us the 0th-level expression:

P (0)
x1,...,xi,y1,...,yN

= (1− p)i−∆(x1,...,xi,y1,...,yi)p∆(x1,...,xi,y1,...,yi).

We can build this up inductively from here. This is a nice recursion; it’s rare for general encoding schemes
that we can write it down as easily as this.

Now we want to set δ, the bounds on our entropies, to much less than 1/N , so that by the union bound,
it’s still very unlikely to make a mistake. Notice that what you get isn’t necessarily the most likely vector
given what you know; it’s more like the “greediest.” But we can easily find it and prove it’s good enough.

Now we want to show that the probability that our entropies are within the range (δ, 1− δ) is very small.
What we’ll do is take up the analysis in the special case of the Binary Erasure Channel, since the calculations
are a bit nicer there. Again, decoding an erasure channel isn’t a very surprising result, since you’re just
solving a system, but proving polarization in it is profound.

Let’s see what happens in a single step of our erasure channel. Starting with u1, u2 ∈ {0, 1}, we get
out v1, v2 ∈ {0, 1, ?} from v1 = u1 ⊕ u2 and v2 = u2, with a probability p of erasure. We want to know
H(u1|v1, v2) and H(u2|u1, v1, v2). With just one input in BEC(p) given by x → y, if y is 0 or 1 then x is
determined, so H(x|y) = pH(1/2) = p.

Suppose H(v1) = H(v2) = α, and look at the entropy of u2 conditioned on the rest: H(u2|u1, v1, v2) =
Pr[u2 =?|v1, v2, u1] = Pr[v1 =?] Pr[v2 =?] = p2 because if we know either v1 or v2, assuming you know u1,
you have enough to recover u2. Therefore, H(u1|v1, v2) = 2α− α2.

So in our procedure, we replace two α’s with α2 and 2α − α2. We want to claim that by doing this
repeatedly, we get either very close to 0 or very close to 1. How can we analyze this?

Here are the ideas of the analysis:

(1) At intermediate stages, show that the rough polarization so far is polynomial in the block lengths.

(2) Roughly polarized high entropy bits become highly polarized in the remaining steps.

To analyze the rough polarization, let Z
(l)
i = Pr[x

(l)
i =?], where the l denotes the stage in our polarization this

is in. This is the quantity we want to be close to either 0 or 1. Instead, we’ll analyze Y
(l)
i =

√
Z

(l)
i (1− Z(l)

i ).
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What we then show is that ‖Y (l)‖1 <
√

3
2 ‖Y

(l−1)‖1. This will be good enough to prove rough polarization,
so let’s see why it’s true.

In the L1 norm, α, α give us 2
√
α(1− α), and α2, 2α− α2 give us

‖Y (l)‖1 = α
√

1− α2 +
√

(2α− α2)(1− 2α+ α2) =
√
α(1− α)(

√
α(1 + α) +

√
(2− α)(1− α).

Now the quantity in parentheses is the dot product of vectors x = (
√
α,
√

1− α) and y = (
√

1 + α,
√

2− α),

which is at most
√
‖x‖‖y‖ =

√
1 · 3 =

√
3. Therefore, ‖Y (l)‖1 ≤

√
3

2 ‖Y
(l−1)‖1.

So you can actually trace how quickly the polarization is happening. Then you find that the aveage
number of polarized bits is exponential or close to exponential. It’s not good enough for the full polarization,
but it gets a rough polarization that you can then use to get a full polarization, but we won’t see that.

For those who care, in the general BSC setting, you can still talk about the entropy of these bits, but the
analysis tends to focus on the Bhattachorya parameter, which plays the role of the Zi here. The argument
is similar but more complicated. You still look at Y = Z(1 − Z). You can’t prove something as simple as
the L2 norm of these vectors shrinking.

Finding polarization was a very information-theoretic approach. In the next lectures, we’ll talk about
other ways of using graphs in error-correcting codes.
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