
6.440 Essential Coding Theory Spring 2013

Lecture 19 - April 22, 2013
Lecturer: Madhu Sudan Scribe: Mohsen Ghaffari

1 Announcement

Sign up for the project presentation slots. Related Information are avail-
able on the website of the course. The presentation dates are Tuesday 5/7
and Thursday 5/9, 10 am to 1 pm. Each team will have a 20 minutes slot for
presentation.

2 Overview: Codes From Other Codes

So far in the course, we have seen three types of codes, summarized as follows:

1. Algebraic Codes

• Work for worst-case errors.

• Have polynomial time encoding and decoding algorithms

2. LDPCs

• Work for worst-case errors as well, but a less many errors (smaller
distance) compared to the Algebraic Codes.

• Have linear time encoding and decoding algorithms and are simpler.

3. Polar Codes

• Work for random errors. when viewed in the context of worst-case
errors, these codes do not have good distance.

• Have O(n log n) encoding and decoding algorithms. Note that this
bounds sits somewhere in between the time complexities of the Al-
gebraic Codes and LDPCs.

In today’s lecture, we will look into the question of “how can we combine codes
to get new codes?”. In this regard, we will consider five types of operations:

• Puncturing

• Restriction

• Tensor

• Concatenation

19-1

• A graph-theoretic method

Puncturing and restriction are simple and basic operations, which we will review
quickly, and we have already seen concatenation in the past lectures (refer to
Lecture 7). The focus in this lecture will be on the Tensor method, presented
in Section 3.2 and the graph-theoretical method, presented in 3.4.

3 Operations on Codes

3.1 Puncturing & Restriction (simple)

To explain puncturing and restriction, consider an (n, k, d)Σ code C and fix a
coordinate i ∈ {1, 2, . . . , n}.

Puncturing In the puncturing operation, for each codeword cj ∈ C, we elim-
inate the ith coordinate of cj . It is easy to see that this operation produces a
(n− 1, k, d− 1)Σ code.

Restriction Consider the ith coordinate of all the codewords in C and let a ∈
Σ be the symbol that appears in the ith coordinate with the highest frequency.
Let C ′ be the set of all the codewords cj ∈ C such that the ith coordinate of cj
is equal to a. In the restriction operation, the new code Cnew is derived from
C ′ by eliminating the ith coordinate of each codeword cj ∈ C ′. It is easy to
see that Cnew is a (n − 1, k − 1, d)Σ code. In particular, to see that Cnew has
dimension k − 1, note that by definition of a, the number of codewords in C ′

(and thus in Cnew) is at least |Σ|k/Σ = |Σ|k−1.

3.2 Tensor (new)

We define the tensor operation for linear codes. For two linear codes C1 =
[n1, k1, d1]Σ, C2 = [n2, k2, d2]Σ, the tensor code of C1 and C2 is denoted by
C1 ⊗ C2. We view the codewords of C1 ⊗ C2 as a n1 × n2 matrix 1. A given
n1×n2 matrix A with entries in Σ is a codeword of code C1⊗C2 iff each column
A is a codeword of C1 and each row of A is a codeword of C2.

An1,n2 =

a1,1 a1,2 · · · a1,n2

a2,1 a2,2 · · · a2,n2

...
...

. . .
...

an1,1 an1,2 · · · an1,n2

Theorem 1 C1 ⊗ C2 is a [n1n2, k1k2, d1d2]Σ code.

1Note that this can be equivalently viewed as a vector of length n1n2.

19-2

Proof First of all, it is easy to see that C1 ⊗ C2 is a linear code. Intuitively,
this is because C1 ⊗C2 can be described as a collection of linear constraints on
the entries of the matrix. To formally prove the linearity, one can see that the
summation of two matrices (codewords) in C1⊗C2 is in C1⊗C2, and also, that
scaling up a matrix in C1 ⊗ C2 by an element of Σ is in C1 ⊗ C2, as well.

We next verify that C1⊗C2 has distance d1d2. First consider a codeword c1
of C1 that has only d1 non-zero elements, and a codeword c2 of C2 that has only
d2 non-zero elements. Then, consider the matrix A where the entry of A in the
intersection of the ith row and the jth column, i.e., ai,j , is equal to the product
of the ith element of c1 and the jth element of c2. Note that A ∈ C1⊗C2 because
each column of A is a multiple of c1 and is thus a codeword of C1, and each
row of A is a multiple of c2 and is thus a codeword of C2. Now the number of
nonzero elements of A is exactly d1d2. This shows that the distance of C1 ⊗C2

is at most d1d2. To see that this distance is also at least d1d2, consider an
arbitrary non-zero matrix B in C1⊗C2 and pick a nonzero entry of B; let it be
bi,j . Since the ith row of B is a non-zero codeword of C2, this row has at least
d2 nonzero elements. Consider the d2 columns of B that intersect the ith row of
B in these nonzero elements (at least d2 columns). Each of these columns is z
nonzero codeword of C1 and thus, has at least d1 nonzero elements. Therefore,
matrix B in total has at least d1d2 nonzero entries. Hence, we conclude that
the distance of code C1 ⊗ C2 is d1d2.

Finally, we verify that C1⊗C2 has dimension k1k2. Before going there, note
that just using the method described at the start of the previous paragraph, we
can find |Σ|k1 · |Σ|k2 = |Σ|k1+k2 matrices in C1 ⊗ C2, which already shows that
the dimension of C1 ⊗ C2 is at least k1 + k2. To prove that the dimension is
k1k2, we show a method to produce |Σ|k1k2 matrices in C1 ⊗ C2. Note that we
can describe code C1 by an n1×k1 matrix G1 such that for each k1×1 vector x
with entries from Σ, G1x is a codeword of C1. Similarly, we can describe code
C2 by an n2×k2 matrix G2 such that for each k2× 1 vector y with entries from
Σ, yTGT

2 is a codeword of C2. Now, for each k1×k2 matrix A with entries from
Σ, G1AG

T
2 is a codeword of C1 ⊗ C2.

G1

n1×k1

 A

k1×k2

 GT
2

k2×n2

∈ C1 ⊗ C2

Moreover, each matrix A produces a distinct matrix G1AG
T
2 of C1⊗C2. Hence,

we get |Σ|k1k2 matrices which shows that C1 ⊗ C2 has dimension k1k2.

19-3

3.3 Concatenation, and Recap

In the past lectures, we defined concatenation. As a short summary, the opera-
tions that we have studied so far can be summarized as follows:

• Puncturing: (n, k, d)Fq
→ (n− 1, k, d− 1)Fq

• Restriction: (n, k, d)Fq
→ (n− 1, k − 1, d)Fq

• Tensor: [n1, k1, d1]Fq ⊗ [n2, k2, d2]Fq → [n1n2, k1k2, d1d2]Fq

• Concatenation: {n1, k1, d1}Fk2
q
◦ [n2, k2, d2]Fq

→ [n1n2, k1k2, d1d2]Fq

In the final bullet-point, {n, k, d}Fk′
q

denotes an Additive Code, which can be

viewed as a weaker variant of linear code, and is defined as follows:

Definition 2 (Additive Code) C ⊆ Fk′

q is a {n, k, d}Fk′
q

code iff (1) for each

codeword (x1, . . . , xn) ∈ C and each α ∈ Fq, we have (αx1, . . . , αxn) ∈ C,
and (2) for each two codewords (x1, . . . , xn) and (y1, . . . , yn) in C, we have
(x1 + y1, . . . , xn + yn) ∈ C.

Note that each of the above operations loses in ‘performance’ (e.g., when
measured by rate plus distance). Also, amongst them, only concatenation has
been useful for us thus far. In the next section, we present a graph-theoretic
method of deriving new codes from given codes which actually leads to improve-
ments in ‘performance’.

3.4 The Graph-Theoretic Method

The method that we explain in this section was first presented by Alon, Bruck,
Naor, Naor and Roth in 1992 [2], and later extended by Alon, Edmonds, and
Luby in 1995 [3]. These two papers focus on the construction of these two
codes and will be the focus point of the rest of this lecture. Guruswami and
Indyk [1] studied the time complexity of the decoding of codes constructed by
this method.

We start with presenting the idea of the ABNNR work [2], which takes a
‘good’ code over alphabet F2 and builds an ‘excellent’ code over Fd

2. Consider a
bipartite d-regular graph H with n nodes on each side that is a (γ, δ)-expander
2. Let C ∈ Fn

2 be a code with distance at least δ′n. For each codeword c ∈ C,
we get a codeword c′ ∈ Cnew, as follows: label the n nodes on the left side of
H with the bits of the codeword c. Then, for each node v on the right side of
H, label v with the binary string of length d that is made of the labels of the d
neighbors of v (ordered consistent with the ordering of nodes of the left side).
The codeword c′ ∈ Cnew consists of the labels of the nodes of the right side,
which are n symbols in Fd

2. See Figure 3.4 for an illustration.

2Recall from the previous lectures that H is a (γ, δ)-expander if for each set S of nodes on
the left such that |S| ≤ δn, we have |Γ(S)| ≥ δ|S|, where Γ(S) denotes the set of nodes on the
right side that have at least one neighbor in S.

19-4

d

d

.

.

.

n nodes n nodes

.

.

.

0

1

0

0

0

(0, 1, 0)

codeword c

Figure 1: Creating a codeword c′ ∈ Cnew from codeword c ∈ C

Theorem 3 If C is a [n, k, δ′n]2 code and H is a bipartite d-regular (γ, δ)-
expander graph with n nodes on each side such that δ ≥ δ′, then the new code
Cnew derived as above is a {n, kd , γδ

′n}2d code.

Proof It is easy to check that Cnew is an additive code. For the dimension,
note that Cnew has 2k codewords, one for each codeword of C. These codewords
correspond to 2k = (2d)

k
d messages in alphabet Fd

2, which can be each expressed
via k

d symbols in this alphabet. Thus the dimension of the new code is k
d .

For the distance, note that each nonzero codeword c of C produces a code-
word of Cnew with at least γδ′ nonzero symbols3. This is because, let S be a
set of δ′ nonzero elements of c (exists because C has distance δ′n). Then the
labels of all nodes in Γ(S) are non-zero, and we know that since |S| = δ′n ≤ δn
and H is a (γ, δ)-expander, |Γ(S)| ≥ γδ′.

If we choose a ‘good’ expander H, then γ would be close to d which means
that in Cnew, we have increased the distance by (almost) a factor of d, when
compared to C. This however comes at the cost of decreasing the rate by a
factor of d and increasing the alphabet size exponentially to 2d.

Alon, Edmonds, Luby [3] presented a new interpretation of this method. In
this interpretation, we combine two codes to get one new code. We explain
later that putting the ABNNR work in this framework, one of the initial codes
is simply a repetition code. First we present a definition:

Definition 4 ((d, ε)-Regular Bipartite Graph): Consider a d-regular bipar-
tite graph H with n nodes on each side. H is called a (d, ε)-Regular Bipartite
Graph if for each set X of the left nodes of H and each set Y of the right nodes
of H, we have

|EH(X,Y)| ≥ (
|X|
n

|Y |
n
− ε) · dn

3Here, the latter nonzero is with respect to F d
2 and means an element of Fd

2 that is not
equal to (0, 0, . . . , 0)︸ ︷︷ ︸

d times

.

19-5

.

.

.

n nodes

x1 d

n nodes

codeword c

x2

x3

xn

.

.

.

.

.

.

Encoding with Csmall

d-bit vectors

(1, 0, …, 1)
1

0

1

.

.

.

1

1

0

(1, 1, …, 0)

.

.

.

d

Figure 2: New way of creating a codeword c′ ∈ Cnew from codeword c ∈ C

, where EH(X,Y) denotes the edges of H with one endpoint in X and the other
in Y .4

We define the new code Cnew using a given a (d, ε)-regular bipartite graph H,
a given additive code C = {n, k, δ′n}FR1d

2
and a given linear code Csmall =

[d,R1d, δ1d]F2
. For each codeword c ∈ C, we define a codeword c′ ∈ Cnew,

as follows: label the n nodes on the left side of H with the n symbols of the
codeword c. Then, encode each of these symbols using Csmall. Thus, now, each
node on the left is labeled with a d-bit vector. Each left-side node sends the
d-bits of its labels to its d neighbors on the right side of graph H, one bit to
each and with the order consistent with the ordering of the bits of the label
and the ordering of the right-side nodes. Each node on the right-side receives
exactly d bits, one from each of its neighbors. Putting these bits in a d-bit
vector (ordered consistent with the ordering of the left-side nodes) gives the
label of each right-side node. The n labels of the right-side nodes constitute the
codeword c′ in Cnew ⊆ Fd

2. See Figure 3.4 for an illustration.

Theorem 5 If C is a {n, k, δ′n}FR1d
2

code, Csmall is a [d,R1d, δ1d]F2
code, and

H is a (d, ε)-regular bipartite graph, then the new code Cnew derived as above is
a {n,R1k, (δ1 − ε/δ′)}Fd

2
code.

Note that this theorem shows that the new code will have rate and relative
distance almost equal to those of the code Csmall. In the case of ABNNR work,
Csmall was simply a repetition code, i.e., we had R1d = 1 and Csmall = [d, 1, d]2.

We will see the proof of Theorem 5 in the next lecture. We will also study
some algorithms for decoding the codes constructed via this method.

4Note that on a random d-regular bipartite graph H′, E[|EH′ (X,Y)|] = (
|X|
n

|Y |
n

) · dn.

19-6

References

[1] V. Guruswami, and P. Indyk, “Expander-Based Constructions of Efficiently
Decodable Codes,” In the proceedings of 42nd Annual Symposium on Foun-
dations of Computer Science (FOCS’01), IEEE Computer Society, Las Ve-
gas, Nevada, USA, 658-667.

[2] N. Alon, N., J. Bruck, J. Naor, M. Naor, and R.M. Roth, “Construction of
asymptotically good low-rate error-correcting codes through pseudo-random
graphs,” Information Theory, IEEE Transactions on , vol.38, no.2, pp.509-
516, Mar 1992.

[3] N. Alon, J. Edmonds, and M. Luby, “Linear time erasure codes with nearly
optimal recovery,” In Proceedings of the 36th Annual Symposium on Foun-
dations of Computer Science (FOCS’95). IEEE Computer Society, Washing-
ton, DC, USA, 512-520.

19-7

