1 Announcement

Sign up for the project presentation slots. Related Information are available on the website of the course. The presentation dates are Tuesday $5 / 7$ and Thursday $5 / 9,10$ am to 1 pm . Each team will have a 20 minutes slot for presentation.

2 Overview: Codes From Other Codes

So far in the course, we have seen three types of codes, summarized as follows:

1. Algebraic Codes

- Work for worst-case errors.
- Have polynomial time encoding and decoding algorithms

2. LDPCs

- Work for worst-case errors as well, but a less many errors (smaller distance) compared to the Algebraic Codes.
- Have linear time encoding and decoding algorithms and are simpler.

3. Polar Codes

- Work for random errors. when viewed in the context of worst-case errors, these codes do not have good distance.
- Have $O(n \log n)$ encoding and decoding algorithms. Note that this bounds sits somewhere in between the time complexities of the Algebraic Codes and LDPCs.

In today's lecture, we will look into the question of "how can we combine codes to get new codes?". In this regard, we will consider five types of operations:

- Puncturing
- Restriction
- Tensor
- Concatenation
- A graph-theoretic method

Puncturing and restriction are simple and basic operations, which we will review quickly, and we have already seen concatenation in the past lectures (refer to Lecture 7). The focus in this lecture will be on the Tensor method, presented in Section 3.2 and the graph-theoretical method, presented in 3.4.

3 Operations on Codes

3.1 Puncturing \& Restriction (simple)

To explain puncturing and restriction, consider an $(n, k, d)_{\Sigma}$ code C and fix a coordinate $i \in\{1,2, \ldots, n\}$.

Puncturing In the puncturing operation, for each codeword $c_{j} \in C$, we eliminate the $i^{t h}$ coordinate of c_{j}. It is easy to see that this operation produces a $(n-1, k, d-1)_{\Sigma}$ code.

Restriction Consider the $i^{\text {th }}$ coordinate of all the codewords in C and let $a \in$ Σ be the symbol that appears in the $i^{t h}$ coordinate with the highest frequency. Let C^{\prime} be the set of all the codewords $c_{j} \in C$ such that the $i^{t h}$ coordinate of c_{j} is equal to a. In the restriction operation, the new code $C_{\text {new }}$ is derived from C^{\prime} by eliminating the $i^{t h}$ coordinate of each codeword $c_{j} \in C^{\prime}$. It is easy to see that $C_{\text {new }}$ is a $(n-1, k-1, d)_{\Sigma}$ code. In particular, to see that $C_{n e w}$ has dimension $k-1$, note that by definition of a, the number of codewords in C^{\prime} (and thus in $C_{\text {new }}$) is at least $|\Sigma|^{k} / \Sigma=|\Sigma|^{k-1}$.

3.2 Tensor (new)

We define the tensor operation for linear codes. For two linear codes $C_{1}=$ [$\left.n_{1}, k_{1}, d_{1}\right]_{\Sigma}, C_{2}=\left[n_{2}, k_{2}, d_{2}\right]_{\Sigma}$, the tensor code of C_{1} and C_{2} is denoted by $C_{1} \otimes C_{2}$. We view the codewords of $C_{1} \otimes C_{2}$ as a $n_{1} \times n_{2}$ matrix ${ }^{1}$. A given $n_{1} \times n_{2}$ matrix A with entries in Σ is a codeword of code $C_{1} \otimes C_{2}$ iff each column A is a codeword of C_{1} and each row of A is a codeword of C_{2}.

$$
A_{n_{1}, n_{2}}=\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n_{2}} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n_{1}, 1} & a_{n_{1}, 2} & \cdots & a_{n_{1}, n_{2}}
\end{array}\right]
$$

Theorem $1 C_{1} \otimes C_{2}$ is a $\left[n_{1} n_{2}, k_{1} k_{2}, d_{1} d_{2}\right]_{\Sigma}$ code.

[^0]Proof First of all, it is easy to see that $C_{1} \otimes C_{2}$ is a linear code. Intuitively, this is because $C_{1} \otimes C_{2}$ can be described as a collection of linear constraints on the entries of the matrix. To formally prove the linearity, one can see that the summation of two matrices (codewords) in $C_{1} \otimes C_{2}$ is in $C_{1} \otimes C_{2}$, and also, that scaling up a matrix in $C_{1} \otimes C_{2}$ by an element of Σ is in $C_{1} \otimes C_{2}$, as well.

We next verify that $C_{1} \otimes C_{2}$ has distance $d_{1} d_{2}$. First consider a codeword c_{1} of C_{1} that has only d_{1} non-zero elements, and a codeword c_{2} of C_{2} that has only d_{2} non-zero elements. Then, consider the matrix A where the entry of A in the intersection of the $i^{\text {th }}$ row and the $j^{\text {th }}$ column, i.e., $a_{i, j}$, is equal to the product of the $i^{t h}$ element of c_{1} and the $j^{t h}$ element of c_{2}. Note that $A \in C_{1} \otimes C_{2}$ because each column of A is a multiple of c_{1} and is thus a codeword of C_{1}, and each row of A is a multiple of c_{2} and is thus a codeword of C_{2}. Now the number of nonzero elements of A is exactly $d_{1} d_{2}$. This shows that the distance of $C_{1} \otimes C_{2}$ is at most $d_{1} d_{2}$. To see that this distance is also at least $d_{1} d_{2}$, consider an arbitrary non-zero matrix B in $C_{1} \otimes C_{2}$ and pick a nonzero entry of B; let it be $b_{i, j}$. Since the $i^{t h}$ row of B is a non-zero codeword of C_{2}, this row has at least d_{2} nonzero elements. Consider the d_{2} columns of B that intersect the $i^{\text {th }}$ row of B in these nonzero elements (at least d_{2} columns). Each of these columns is z nonzero codeword of C_{1} and thus, has at least d_{1} nonzero elements. Therefore, matrix B in total has at least $d_{1} d_{2}$ nonzero entries. Hence, we conclude that the distance of code $C_{1} \otimes C_{2}$ is $d_{1} d_{2}$.

Finally, we verify that $C_{1} \otimes C_{2}$ has dimension $k_{1} k_{2}$. Before going there, note that just using the method described at the start of the previous paragraph, we can find $|\Sigma|^{k_{1}} \cdot|\Sigma|^{k_{2}}=|\Sigma|^{k_{1}+k_{2}}$ matrices in $C_{1} \otimes C_{2}$, which already shows that the dimension of $C_{1} \otimes C_{2}$ is at least $k_{1}+k_{2}$. To prove that the dimension is $k_{1} k_{2}$, we show a method to produce $|\Sigma|^{k_{1} k_{2}}$ matrices in $C_{1} \otimes C_{2}$. Note that we can describe code C_{1} by an $n_{1} \times k_{1}$ matrix G_{1} such that for each $k_{1} \times 1$ vector x with entries from $\Sigma, G_{1} x$ is a codeword of C_{1}. Similarly, we can describe code C_{2} by an $n_{2} \times k_{2}$ matrix G_{2} such that for each $k_{2} \times 1$ vector y with entries from $\Sigma, y^{T} G_{2}^{T}$ is a codeword of C_{2}. Now, for each $k_{1} \times k_{2}$ matrix A with entries from $\Sigma, G_{1} A G_{2}^{T}$ is a codeword of $C_{1} \otimes C_{2}$.

Moreover, each matrix A produces a distinct matrix $G_{1} A G_{2}^{T}$ of $C_{1} \otimes C_{2}$. Hence, we get $|\Sigma|^{k_{1} k_{2}}$ matrices which shows that $C_{1} \otimes C_{2}$ has dimension $k_{1} k_{2}$.

3.3 Concatenation, and Recap

In the past lectures, we defined concatenation. As a short summary, the operations that we have studied so far can be summarized as follows:

- Puncturing: $(n, k, d)_{\mathbb{F}_{q}} \rightarrow(n-1, k, d-1)_{\mathbb{F}_{q}}$
- Restriction: $(n, k, d)_{\mathbb{F}_{q}} \rightarrow(n-1, k-1, d)_{\mathbb{F}_{q}}$
- Tensor: $\left[n_{1}, k_{1}, d_{1}\right]_{\mathbb{F}_{q}} \otimes\left[n_{2}, k_{2}, d_{2}\right]_{\mathbb{F}_{q}} \rightarrow\left[n_{1} n_{2}, k_{1} k_{2}, d_{1} d_{2}\right]_{\mathbb{F}_{q}}$
- Concatenation: $\left\{n_{1}, k_{1}, d_{1}\right\}_{\mathbb{F}_{q}^{k_{2}}} \circ\left[n_{2}, k_{2}, d_{2}\right]_{\mathbb{F}_{q}} \rightarrow\left[n_{1} n_{2}, k_{1} k_{2}, d_{1} d_{2}\right]_{\mathbb{F}_{q}}$

In the final bullet-point, $\{n, k, d\}_{\mathbb{F}_{q}^{k^{\prime}}}$ denotes an Additive Code, which can be viewed as a weaker variant of linear code, and is defined as follows:

Definition 2 (Additive Code) $C \subseteq \mathbb{F}_{q}^{k^{\prime}}$ is a $\{n, k, d\}_{\mathbb{F}_{q}^{k^{\prime}}}$ code iff (1) for each codeword $\left(x_{1}, \ldots, x_{n}\right) \in C$ and each $\alpha \in \mathbb{F}_{q}$, we have $\left(\alpha x_{1}, \ldots, \alpha x_{n}\right) \in C$, and (2) for each two codewords $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{n}\right)$ in C, we have $\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \in C$.

Note that each of the above operations loses in 'performance' (e.g., when measured by rate plus distance). Also, amongst them, only concatenation has been useful for us thus far. In the next section, we present a graph-theoretic method of deriving new codes from given codes which actually leads to improvements in 'performance'.

3.4 The Graph-Theoretic Method

The method that we explain in this section was first presented by Alon, Bruck, Naor, Naor and Roth in 1992 [2], and later extended by Alon, Edmonds, and Luby in 1995 [3]. These two papers focus on the construction of these two codes and will be the focus point of the rest of this lecture. Guruswami and Indyk [1] studied the time complexity of the decoding of codes constructed by this method.

We start with presenting the idea of the ABNNR work [2], which takes a 'good' code over alphabet \mathbb{F}_{2} and builds an 'excellent' code over \mathbb{F}_{2}^{d}. Consider a bipartite d-regular graph H with n nodes on each side that is a (γ, δ)-expander ${ }^{2}$. Let $C \in \mathbb{F}_{2}^{n}$ be a code with distance at least $\delta^{\prime} n$. For each codeword $c \in C$, we get a codeword $c^{\prime} \in C_{\text {new }}$, as follows: label the n nodes on the left side of H with the bits of the codeword c. Then, for each node v on the right side of H, label v with the binary string of length d that is made of the labels of the d neighbors of v (ordered consistent with the ordering of nodes of the left side). The codeword $c^{\prime} \in C_{\text {new }}$ consists of the labels of the nodes of the right side, which are n symbols in \mathbb{F}_{2}^{d}. See Figure 3.4 for an illustration.

[^1]

Figure 1: Creating a codeword $c^{\prime} \in C_{n e w}$ from codeword $c \in C$

Theorem 3 If C is a $\left[n, k, \delta^{\prime} n\right]_{2}$ code and H is a bipartite d-regular (γ, δ) expander graph with n nodes on each side such that $\delta \geq \delta^{\prime}$, then the new code $C_{\text {new }}$ derived as above is a $\left\{n, \frac{k}{d}, \gamma \delta^{\prime} n\right\}_{2^{d}}$ code.
Proof It is easy to check that $C_{n e w}$ is an additive code. For the dimension, note that $C_{\text {new }}$ has 2^{k} codewords, one for each codeword of C. These codewords correspond to $2^{k}=\left(2^{d}\right)^{\frac{k}{d}}$ messages in alphabet \mathbb{F}_{2}^{d}, which can be each expressed via $\frac{k}{d}$ symbols in this alphabet. Thus the dimension of the new code is $\frac{k}{d}$.

For the distance, note that each nonzero codeword c of C produces a codeword of $C_{n e w}$ with at least $\gamma \delta^{\prime}$ nonzero symbols ${ }^{3}$. This is because, let S be a set of δ^{\prime} nonzero elements of c (exists because C has distance $\delta^{\prime} n$). Then the labels of all nodes in $\Gamma(S)$ are non-zero, and we know that since $|S|=\delta^{\prime} n \leq \delta n$ and H is a (γ, δ)-expander, $|\Gamma(S)| \geq \gamma \delta^{\prime}$.

If we choose a 'good' expander H, then γ would be close to d which means that in $C_{\text {new }}$, we have increased the distance by (almost) a factor of d, when compared to C. This however comes at the cost of decreasing the rate by a factor of d and increasing the alphabet size exponentially to 2^{d}.

Alon, Edmonds, Luby [3] presented a new interpretation of this method. In this interpretation, we combine two codes to get one new code. We explain later that putting the ABNNR work in this framework, one of the initial codes is simply a repetition code. First we present a definition:

Definition 4 ((d, $\epsilon)$-Regular Bipartite Graph): Consider a d-regular bipartite graph H with n nodes on each side. H is called $a(d, \epsilon)$-Regular Bipartite Graph if for each set X of the left nodes of H and each set Y of the right nodes of H, we have

$$
\left|E_{H}(X, Y)\right| \geq\left(\frac{|X|}{n} \frac{|Y|}{n}-\epsilon\right) \cdot d n
$$

[^2]

Figure 2: New way of creating a codeword $c^{\prime} \in C_{\text {new }}$ from codeword $c \in C$
, where $E_{H}(X, Y)$ denotes the edges of H with one endpoint in X and the other in $Y .{ }^{4}$

We define the new code $C_{\text {new }}$ using a given a (d, ϵ)-regular bipartite graph H, a given additive code $C=\left\{n, k, \delta^{\prime} n\right\}_{\mathbb{F}_{2}^{R_{1} d}}$ and a given linear code $C_{\text {small }}=$ $\left[d, R_{1} d, \delta_{1} d\right]_{\mathbb{F}_{2}}$. For each codeword $c \in C$, we define a codeword $c^{\prime} \in C_{n e w}$, as follows: label the n nodes on the left side of H with the n symbols of the codeword c. Then, encode each of these symbols using $C_{\text {small }}$. Thus, now, each node on the left is labeled with a d-bit vector. Each left-side node sends the d-bits of its labels to its d neighbors on the right side of graph H, one bit to each and with the order consistent with the ordering of the bits of the label and the ordering of the right-side nodes. Each node on the right-side receives exactly d bits, one from each of its neighbors. Putting these bits in a d-bit vector (ordered consistent with the ordering of the left-side nodes) gives the label of each right-side node. The n labels of the right-side nodes constitute the codeword c^{\prime} in $C_{\text {new }} \subseteq \mathbb{F}_{2}^{d}$. See Figure 3.4 for an illustration.

Theorem 5 If C is a $\left\{n, k, \delta^{\prime} n\right\}_{\mathbb{F}_{2}^{R_{1} d}}$ code, $C_{\text {small }}$ is a $\left[d, R_{1} d, \delta_{1} d\right]_{\mathbb{F}_{2}}$ code, and H is a (d, ϵ)-regular bipartite graph, then the new code $C_{\text {new }}$ derived as above is $a\left\{n, R_{1} k,\left(\delta_{1}-\epsilon / \delta^{\prime}\right)\right\}_{\mathbb{F}_{2}^{d}}$ code.

Note that this theorem shows that the new code will have rate and relative distance almost equal to those of the code $C_{\text {small }}$. In the case of ABNNR work, $C_{\text {small }}$ was simply a repetition code, i.e., we had $R_{1} d=1$ and $C_{\text {small }}=[d, 1, d]_{2}$.

We will see the proof of Theorem 5 in the next lecture. We will also study some algorithms for decoding the codes constructed via this method.

[^3]
References

[1] V. Guruswami, and P. Indyk, "Expander-Based Constructions of Efficiently Decodable Codes," In the proceedings of 42nd Annual Symposium on Foundations of Computer Science (FOCS'01), IEEE Computer Society, Las Vegas, Nevada, USA, 658-667.
[2] N. Alon, N., J. Bruck, J. Naor, M. Naor, and R.M. Roth, "Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs," Information Theory, IEEE Transactions on, vol.38, no.2, pp.509516, Mar 1992.
[3] N. Alon, J. Edmonds, and M. Luby, "Linear time erasure codes with nearly optimal recovery," In Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS'95). IEEE Computer Society, Washington, DC, USA, 512-520.

[^0]: ${ }^{1}$ Note that this can be equivalently viewed as a vector of length $n_{1} n_{2}$.

[^1]: ${ }^{2}$ Recall from the previous lectures that H is a (γ, δ)-expander if for each set S of nodes on the left such that $|S| \leq \delta n$, we have $|\Gamma(S)| \geq \delta|S|$, where $\Gamma(S)$ denotes the set of nodes on the right side that have at least one neighbor in S.

[^2]: ${ }^{3}$ Here, the latter nonzero is with respect to F_{2}^{d} and means an element of \mathbb{F}_{2}^{d} that is not equal to $\underbrace{(0,0, \ldots, 0)}$.

[^3]: ${ }^{4}$ Note that on a random d-regular bipartite graph $H^{\prime}, \mathbb{E}\left[\left|E_{H^{\prime}}(X, Y)\right|\right]=\left(\frac{|X|}{n} \frac{|Y|}{n}\right) \cdot d n$.

