March 4, 2015

Lecture 9

Lecturer: Madhu Sudan

Scribe: Sung Min Park

1 Overview

Today, we will continue our quest for factorization of bivariate polynomials. In particular, we will see the use of resultants that we learned about last time, and see Hensel lifting in more detail.

2 Factoring $\mathbb{F}_q[x, y]$

Recall from last time our overall algorithm for factoring:

- 1. Factor $f = g \cdot h \pmod{y}$ where $g, h \in \mathbb{F}_q[x]$. Here, g and h should be relatively prime¹ and of positive degree. WLOG g is irreducible.
- 2. A procedure called Hensel lifting is used to lift the above factors to $f = \tilde{g} \cdot \tilde{h} \pmod{y^{2^t}}$. Noe that now \tilde{g}, \tilde{y} may have terms involving y. We iterate Hensel lifting t times to find \tilde{g}, \tilde{h} s.t. $f = \tilde{g} \cdot \tilde{h} \pmod{y^{2^t}}$. The hope is that if t is large enough \tilde{g} will contain enough information to recover the original factor g. Hensel lifting maintains the invariant that $\tilde{g} = g \pmod{y}$ and $\tilde{h} = h \pmod{y}$.
- 3. The "Jump" step: We focus on \tilde{g} from this point on. Find the lowest x degree polynomial $A \in \mathbb{F}_q[x, y]$ s.t. $\exists \tilde{A} \in \mathbb{F}_q[x, y]$ s.t. $A = \tilde{g} \cdot \tilde{A} \pmod{y^{2^{t-1}}}$. The hope is that A will be a factor of f.

The last step in the above algorithm is quite mysterious. Why should A be factor of f? To get some intuition, suppose $f = A \cdot B$ (here f is square-free and A is irreducible).

When we mod f by (y), in general the factors will split further²:

$$\begin{array}{rcl} f(x,y) &=& A \cdot B \\ f \pmod{I} &=& g \cdot \underbrace{h_1 \cdot b}_h \end{array}$$

After iterations of Hensel lifting, $A = g \cdot h_1 \pmod{y}$ is lifted to $A = g' \cdot h'_1 \pmod{y^{2t}}$. Then, if we consider $\tilde{g} = g'$ and $\tilde{h} = h'_1 \cdot B \pmod{y^{2^t}}$, A is in fact a solution of the above "Jump" problem.

One concern here is the uniqueness of \tilde{g} and \tilde{h} . In fact, given solutions \tilde{g} and \tilde{h} , $\tilde{g}(1+u)$ and $\tilde{h}(1-u)$ for any $u \in (y^{2^{t-1}})$ are also equal to f modulo y^{2^t} . This is the reason why we use $y^{2^{t-1}}$; this kills other candidates.

2.1 The "Jump" problem

Now that we have seen some plausibility of why A might be a factor, we give some more details regarding the solutions of the "Jump" problem . It's easy to observe that solutions to the "Jump" problem form a linear subspace:

Claim 1 If (A, \tilde{A}) and (B, \tilde{B}) are solutions, then so are $(p_1 \cdot A + p_2 \cdot B, p_1 \cdot \tilde{A} + p_2 \cdot \tilde{B})$ for any $p_1, p_2 \in \mathbb{F}_q[x, y]$.

¹To see why we need g, h to be relatively prime, consider f = (x + y)(x - y). Modulo y, this becomes x^2 . If we let g = x and h = x, then we lose information and don't know which of the original factor to recover

 $^{^{2}}$ Example: there are bivariate complex polynomials that are irreducible, but we know that complex polynomial in single variable will split completely

This means that we can find A and \tilde{A} just by solving a linear system.

But it remains of question whether the solution will be unique. The sketch of our uniqueness argument is as follows. Suppose (A, \tilde{A}) is a solution with minimal degree in x. If there is another solution (B, \tilde{B}) , then $(\operatorname{Res}_x(A, B), \tilde{R})$ is also a solution since $\operatorname{Res}_x(A, B)$ is in the ideal generated by A and B. Because $\operatorname{Res}_x(A, B) \in \mathbb{F}_q[y]$, ³ this means the following form of identity has to hold:

 $R(y) = \tilde{g}(x, y) \cdot \tilde{R}(x, y) \pmod{y^{2^{t-1}}}$ where \tilde{g} has positive degree in x

But this is impossible⁴. So A must in fact be unique.

3 Factoring $\mathbb{Z}[x]$

Before we continue our discussion of the factoring algorithm for $\mathbb{F}_q[x, y]$, we note that the algorithm can be readily adapted for factoring integer polynomials $\mathbb{Z}[x]$, modulo some differences in the last step. The following is a rough outline of the algorithm for factoring $\mathbb{Z}[x]$:

- 1. Factor $f = gh \pmod{p}$. Prime p plays the role of ideal (y) from before. We pick p s.t. f has no repeated factors modulo p.
- 2. $f = \tilde{g} \cdot \tilde{h} \pmod{p^{2^t}}$
- 3. Find polynomial A with lowest degree and smallest coefficients s.t. $A = \tilde{g} \cdot \tilde{A} \pmod{y^{2^{t-1}}}$.

There are two concerns here. One is that the coefficients of factors of A may be very large; we can show that we don't have to worry about this. Secondly, the algebraic properties of the solutions to the "Jump" problem in the last step are different. Whereas before we had a nice linear subspace to work with, since the sum of two degree n polynomials is still degree n, we now have the issue of coefficients need to be bounded. The "Jump" problem in this new setting reduces to finding a short basis in a certain lattice. This can be solved by the Lenstra-Lenstra-Lovasz (LLL) algorithm, which we will see later.

4 Hensel's Lifting

We now go back in see how to do Hensel lifting from step 2 of the factoring algorithm. We state the properties of the lift in the following lemma, and will see how it's actually done in the proof.

Lemma 2 Let R be a UFD (ex. $R = \mathbb{F}_q[x, y], \mathbb{Z}[x])$, and $I \subseteq R$ an ideal.

Given f and relatively prime g, h s.t.	$f = g \cdot h (\mathrm{mod} \ I)$
	$1 = a \cdot + b \cdot h \pmod{I}$
	\Downarrow
Then we can find \tilde{g}, \tilde{h} s.t.	$f = \tilde{g}\tilde{h} (\bmod \ I^2)$
	$1 = \tilde{a}\tilde{g} + \tilde{b}\tilde{h} (\bmod \ I)$
	$\tilde{g} = g \pmod{I}$
	$\tilde{h} = h \; (\bmod \; I)$

Moreover, if we repeat this operation to get $\tilde{\tilde{g}}\tilde{\tilde{h}}$ modulo I^4 , then $\tilde{\tilde{g}}$ and $\tilde{\tilde{h}}$ will be unique modulo I^2 .

 $^{^3\}mathrm{See}$ the previous lecture for more on properties of the resultant.

⁴This mostly has to do with the fact that $\tilde{g}(x, y)$ has positive degree in x. More formal proof will be shown later.

Proof Proof is by induction. The work below is for the base case.

Let $\tilde{g} = g + g_1$ and $\tilde{h} = h + h_1$, where $g_1, h_1 \in I$ so that

$$f = (g + g_1)(h + h_1) \pmod{I^2}$$

Since $f = g \cdot h \pmod{I}$, let $f - gh = p \in I$. Then, we can rewrite the above as

$$p + g_1 + h_1 g + g_1 h_1 = 0 \pmod{I^2}$$

The last term disappears since $g_1, h_1 \in I$, their product is in I^2

$$g_1 + h_1 g = -p \pmod{I^2}$$

Is there a solution? Yes, in fact for any p since the gcd of g and h is 1. Choosing $g_1 = -bp$ and $h_1 = -ap$, we can verify that $f = \tilde{g}\tilde{h} \pmod{I^2}$. Also, by definition $\tilde{g} = g \pmod{I}$ and $\tilde{h} = h \pmod{I}$.

Now we show that \tilde{g} and \tilde{h} are relatively prime modulo I^2 . Let 1 = ag + bh + q where $q \in I$ by the gcd assumption. Then, $a\tilde{g} + b\tilde{h} = ag + bh + r = 1 + q + r$ for some $r \in I$. Let $s = q + r \in I$. Now take $\tilde{a} = a(1-s)$ and $\tilde{b} = b(1-s)$, and get:

$$\tilde{a}\tilde{g} + \tilde{b}\tilde{h} = (1-s)(a\tilde{g} + b\tilde{h}) = (1-s)(1+s) = 1-s^2 = 1 \pmod{I^2}$$

We have found lifts \tilde{g}, \tilde{h} with the desired properties.

Finally, we must show that these are unique. Suppose there is another solution $g^* = \tilde{g} + g_2$ and $h^* = \tilde{h}$. ⁵ So we have:

$$g^*h^* = \tilde{g}h + g_2h + h_2\tilde{g} + g_2h_2$$

We know that $g^*h^* = f = \tilde{g}\tilde{h} \pmod{I^2}$. Thus, modulo I^2 we have:

$$g_2h + h_2\tilde{g} = 0 \pmod{I^2}$$
$$\tilde{b}(g_2\tilde{h} + h_2\tilde{g}) = 0 \pmod{I^2}$$
$$g_2\tilde{b}\tilde{h} + \tilde{b}h_2\tilde{g} = 0 \pmod{I^2}$$
$$g_2(1 - \tilde{a}\tilde{g}) + \tilde{b}h_2\tilde{g} = 0 \pmod{I^2}$$
$$g_2 = (\tilde{a}g_2 - \tilde{b}h_2)\tilde{g} \pmod{I^2}$$

Define $u = \tilde{a}g_2 - \tilde{b}h_2$. Since $g_2, h_2 \in I$, $u \in I$. So we have $g^* = \tilde{g} + g_2 = \tilde{g}(1+u)$. By symmetry, we find that

$$h_2 = (\tilde{b}h_2 - \tilde{a}g_2)\tilde{h} \pmod{I^2}$$

Therefore, $h^* = \tilde{h}(1-u)$.

For the inductive case, the existence part is exactly the same. The uniqueness part requires a bit more work.⁶ \blacksquare

 $^{^5\}mathrm{Note}$ that notation was been slightly altered from the presentation in lecture

 $^{^6\}mathrm{See}$ the notes from 2012 for rest of the proof.