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Lecture 9
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1 Overview

Today, we will continue our quest for factorization of bivariate polynomials. In particular, we will see the
use of resultants that we learned about last time, and see Hensel lifting in more detail.

2 Factoring Fq[x, y]
Recall from last time our overall algorithm for factoring:

1. Factor f = g · h (mod y) where g, h ∈ Fq[x]. Here, g and h should be relatively prime1 and of positive
degree. WLOG g is irreducible.

2. A procedure called Hensel lifting is used to lift the above factors to f = g̃ · h̃ (mod y2
t

). Noe that now

g̃, ỹ may have terms involving y. We iterate Hensel lifting t times to find g̃, h̃ s.t. f = g̃ · h̃ (mod y2
t

).
The hope is that if t is large enough g̃ will contain enough information to recover the original factor g.
Hensel lifting maintains the invariant that g̃ = g (mod y) and h̃ = h (mod y).

3. The “Jump” step: We focus on g̃ from this point on. Find the lowest x degree polynomial A ∈ Fq[x, y]

s.t. ∃Ã ∈ Fq[x, y] s.t. A = g̃ · Ã (mod y2
t−1

). The hope is that A will be a factor of f .

The last step in the above algorithm is quite mysterious. Why should A be factor of f? To get some
intuition, suppose f = A ·B (here f is square-free and A is irreducible).

When we mod f by (y), in general the factors will split further2:

f(x, y) = A ·B
f (mod I) = g · h1 · b︸ ︷︷ ︸

h

After iterations of Hensel lifting, A = g · h1 (mod y)) is lifted to A = g′ · h′1 (mod y2t). Then, if we

consider g̃ = g′ and h̃ = h′1 ·B (mod y2
t

), A is in fact a solution of the above “Jump” problem.

One concern here is the uniqueness of g̃ and h̃. In fact, given solutions g̃ and h̃, g̃(1 +u) and h̃(1−u) for

any u ∈ (y2
t−1

) are also equal to f modulo y2
t

. This is the reason why we use y2
t−1

; this kills other candidates.

2.1 The “Jump” problem

Now that we have seen some plausibility of why A might be a factor, we give some more details regarding
the solutions of the “Jump” problem . It’s easy to observe that solutions to the “Jump” problem form a
linear subspace:

1To see why we need g, h to be relatively prime, consider f = (x + y)(x − y). Modulo y, this becomes x2. If we let g = x
and h = x, then we lose information and don’t know which of the original factor to recover

2Example: there are bivariate complex polynomials that are irreducible, but we know that complex polynomial in single
variable will split completely
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Claim 1 If (A, Ã) and (B, B̃) are solutions, then so are (p1 ·A+p2 ·B, p1 ·Ã+p2 ·B̃) for any p1, p2 ∈ Fq[x, y].

This means that we can find A and Ã just by solving a linear system.

But it remains of question whether the solution will be unique. The sketch of our uniqueness argument
is as follows. Suppose (A, Ã) is a solution with minimal degree in x. If there is another solution (B, B̃),
then (Resx(A,B), R̃) is also a solution since Resx(A,B) is in the ideal generated by A and B. Because
Resx(A,B) ∈ Fq[y], 3 this means the following form of identity has to hold:

R(y) = g̃(x, y) · R̃(x, y) (mod y2
t−1

) where g̃ has positive degree in x

But this is impossible4. So A must in fact be unique.

3 Factoring Z[x]
Before we continue our discussion of the factoring algorithm for Fq[x, y], we note that the algorithm can
be readily adapted for factoring integer polynomials Z[x], modulo some differences in the last step. The
following is a rough outline of the algorithm for factoring Z[x]:

1. Factor f = gh (mod p). Prime p plays the role of ideal (y) from before. We pick p s.t. f has no
repeated factors modulo p.

2. f = g̃ · h̃ (mod p2
t

)

3. Find polynomial A with lowest degree and smallest coefficients s.t. A = g̃ · Ã (mod y2
t−1

).

There are two concerns here. One is that the coefficients of factors of A may be very large; we can show
that we don’t have to worry about this. Secondly, the algebraic properties of the solutions to the “Jump”
problem in the last step are different. Whereas before we had a nice linear subspace to work with, since the
sum of two degree n polynomials is still degree n, we now have the issue of coefficients need to be bounded.
The “Jump” problem in this new setting reduces to finding a short basis in a certain lattice. This can be
solved by the Lenstra-Lenstra-Lovasz (LLL) algorithm, which we will see later.

4 Hensel’s Lifting

We now go back in see how to do Hensel lifting from step 2 of the factoring algorithm. We state the properties
of the lift in the following lemma, and will see how it’s actually done in the proof.

Lemma 2 Let R be a UFD (ex. R = Fq[x, y],Z[x]), and I ⊆ R an ideal.

Given f and relatively prime g, h s.t. f = g · h (mod I)

1 = a ·+b · h (mod I)

⇓
Then we can find g̃, h̃ s.t. f = g̃h̃ (mod I2)

1 = ãg̃ + b̃h̃ (mod I)

g̃ = g (mod I)

h̃ = h (mod I)

Moreover, if we repeat this operation to get ˜̃g
˜̃
h modulo I4, then ˜̃g and

˜̃
h will be unique modulo I2.

3See the previous lecture for more on properties of the resultant.
4This mostly has to do with the fact that g̃(x, y) has positive degree in x. More formal proof will be shown later.
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Proof Proof is by induction. The work below is for the base case.

Let g̃ = g + g1 and h̃ = h+ h1, where g1, h1 ∈ I so that

f = (g + g1)(h+ h1) (mod I2)

Since f = g · h (mod I), let f − gh = p ∈ I. Then, we can rewrite the above as

p+ g1 + h1g + g1h1 = 0 (mod I2)

The last term disappears since g1, h1 ∈ I, their product is in I2

g1 + h1g = −p (mod I2)

Is there a solution? Yes, in fact for any p since the gcd of g and h is 1. Choosing g1 = −bp and h1 = −ap,
we can verify that f = g̃h̃ (mod I2). Also, by definition g̃ = g (mod I) and h̃ = h (mod I).

Now we show that g̃ and h̃ are relatively prime modulo I2. Let 1 = ag + bh+ q where q ∈ I by the gcd
assumption. Then, ag̃+bh̃ = ag+bh+r = 1+q+r for some r ∈ I. Let s = q+r ∈ I. Now take ã = a(1−s)
and b̃ = b(1− s), and get:

ãg̃ + b̃h̃ = (1− s)(ag̃ + bh̃) = (1− s)(1 + s) = 1− s2 = 1 (mod I2)

We have found lifts g̃, h̃ with the desired properties.

Finally, we must show that these are unique. Suppose there is another solution g∗ = g̃ + g2 and h∗ = h̃.
5 So we have:

g∗h∗ = g̃h̃+ g2h̃+ h2g̃ + g2h2

We know that g∗h∗ = f = g̃h̃ (mod I2). Thus, modulo I2 we have:

g2h̃+ h2g̃ = 0 (mod I2)

b̃(g2h̃+ h2g̃) = 0 (mod I2)

g2b̃h̃+ b̃h2g̃ = 0 (mod I2)

g2(1− ãg̃) + b̃h2g̃ = 0 (mod I2)

g2 = (ãg2 − b̃h2)g̃ (mod I2)

Define u = ãg2 − b̃h2. Since g2, h2 ∈ I, u ∈ I. So we have g∗ = g̃ + g2 = g̃(1 + u). By symmetry, we find
that

h2 = (b̃h2 − ãg2)h̃ (mod I2)

Therefore, h∗ = h̃(1− u).

For the inductive case, the existence part is exactly the same. The uniqueness part requires a bit more
work.6

The rest of these notes are written by Madhu Sudan.

5Note that notation was been slightly altered from the presentation in lecture
6See the notes from 2012 for rest of the proof.
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5 Madhu’s Addendum/Erratum

First I’d like to apologize for an error in the lecture.
Lemma 2 as stated is incorrect in full generality. It is probably the case that by considering the kind of

ideal I that need to be considered for our applications we might be able to patch it, but it turns out a simpler
lemma is cleaner to state, actually provable (:-)), and sufficient. Lets start with the lemma statement.

Definition 3 Let R be a ring (ex. R = Fq[x, y],Z[x]), and I ⊆ R an ideal. Given f, g, h ∈ R such that

f = gh (mod I) we say that (g̃, h̃) lift (g, h) if f = g̃h̃ (mod I2), g = g̃ (mod I), h = h̃ (mod I), and there
exist ã, b̃ ∈ R such that ãg̃ + b̃h̃ = 1 (mod I2).

Lemma 4 Let R be a ring and I ⊆ R an ideal. Given f, g, h ∈ R such that f = gh (mod I) and there exist
a, b ∈ R such that af + bh = 1 (mod I) there exists a lift (g̃, h̃) of (g, h). Furthermore, (g1, h1) and (g2, h2)
both lift (g, h) if and only if there exist u ∈ I such that g1 = g2(1 + u) and h1 = h2(1− u).

Main changes are we no longer require R to be a UFD (not even that!), but we don’t go to I4 nor do we
prove uniqueness upto I2. Instead we prove a simpler equivalence of multiple solutions which is sufficient.
Note that condition is symmetric since we have g1(1− u) = g2(1− u2) = g2 (mod I2).

We argue sufficiency first.

Sufficiency. Let f = AB with f,A,B ∈ F[x, y] and A irreducible. Further, let f = gh (mod y) with g
being irreducible and relatively prime to h. Assume A = gh′ (mod y). Finally let (g(i), h(i) be the lift of

(g(i−1), h(i−1)) modulo (y2
i

) with g(0) = g and h(0) = h.
Main point (that we didn’t make in the lecture) is that it suffices to show that there exists (h′)(i) such

that (g(i), (h′)(i)) is the lift of (g(i−1), (h′)(i−1)) modulo (y2
i

) and h(i) = B ·(h′)(i) ( mod y2
i

). If we show this,

then by chaining the conditions we have that A = g(i)(h′)(i) (mod y2
i

) and so the jump step will discover A
if we run it with g(t) for sufficiently large t.

So let us show the claim from the above para: Suppose ((g′)(i), (h′)(i)) form a lift of (g(i−1), (h′)(i−1))

modulo I2, where I = (y2
i−1

). Then we have that ((g′)(i), B · (h′)(i)) form a lift of (g(i−1), B · (h′)(i−1))
modulo I2, and so does (g(i), h(i)). By the equivalence above it follows that (g′)(i) = g(i) · (1 + u) for some
u ∈ I. By moving the multiplication by 1 + u It follows that ((g)(i), (1 + u) · B · (h′)(i)) form a lift of
(g(i−1), B · (h′)(i−1)) modulo I2 and this yields the desired claim.
Proof [(of Lemma 4)] We already proved existence of a lift in the proof of Lemma 2. We only do the
uniqueness now. Let g1 = g2 + α and h1 = h2 + β for α, β ∈ I. Since g1h1 = g2h2 (mod I2) we have

αh2 + βg2 = 0 (mod I2).

We’d like to say α = g2u for some u ∈ I and we would be able to say this if we could mutliply by h−12 but we
don’t quite have an inverse for h2. But we have something close — we have that b2h2 = 1− a2g2 (mod I2)
and this is good enough. So we mutliply both sides of the displayed equation by b2 to get

α(1− a2g2) + b2βg2 = 0 (mod I2).

Rearrainging above we have
α = g2(a2α− b2β) = g2u,

if we let u = a2α− b2β. Similar reasoning shows β = −h2u and this proves the lemma.
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